kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhanced ion heating using a TWA antenna in DEMO-like plasmas
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-3280-2361
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-7142-7103
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0009-0005-5616-0235
Max Planck Institute for Plasma Physics.ORCID iD: 0000-0002-0578-9333
Show others and affiliations
(English)In: Journal of Plasma Physics, ISSN 0022-3778, E-ISSN 1469-7807Article in journal (Refereed) Accepted
Abstract [en]

Ion cyclotron resonance heating is a versatile heating method that has been demonstrated to be able to efficiently couple power directly to the ions via the fast magnetosonic wave. However, at temperatures relevant for reactor grade devices such as DEMO, electron damping becomes increasingly important. To reduce electron damping, it is possible to use an antenna with a power spectrum dominated by low parallel wavenumbers. Moreover, using an antenna with a unidirectional spectrum, such as a travelling wave antenna, the parallel wavenumber can be downshifted by mounting the antenna in an elevated position relative to the equatorial plane. This downshift can potentially enhance ion heating as well as fast wave current drive efficiency. Thus, such a system could benefit ion heating during the ramp-up phase and be used for current drive during flat-top operation.

To test this principle, both ion heating and current drive have been simulated in a DEMO-like plasma for a few different mounting positions of the antenna using the FEMIC code. We find that moving the antenna off the equatorial plane makes ion heating more efficient for all considered plasma temperatures at the expense of on-axis heating. Moreover, although current drive efficiency is enhanced, electron damping is reduced for lower mode numbers, thus reducing the driven current in this part of the spectrum.

Keywords [en]
Fusion, Plasma heating, Plasma physics, Tokamak, Ion cyclotron resonance heating
National Category
Fusion, Plasma and Space Physics
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-357970OAI: oai:DiVA.org:kth-357970DiVA, id: diva2:1923318
Note

QC 20241230

Available from: 2024-12-21 Created: 2024-12-21 Last updated: 2024-12-30Bibliographically approved
In thesis
1. Spatial dispersion in finite element models for ion cyclotron resonance heating: Theory and applications for toroidal plasmas
Open this publication in new window or tab >>Spatial dispersion in finite element models for ion cyclotron resonance heating: Theory and applications for toroidal plasmas
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nuclear fusion can provide large amounts of energy from earth-abundant elements,with no carbon emissions and little radioactive waste. For the nuclei to fuse under earth-relevant conditions, temperatures in excess of 100 000 000 °C are needed. At these temperatures, the fuel is in a plasma state. A common method to heat the plasma is ion cyclotron resonance heating (ICRH), where radiofrequency waves are launched from an antenna on the vessel wall into the plasma to resonate with the gyrating ions. Wave propagation and dissipation in hot magnetized plasmas is a nonlocal process, where the plasma response at a given point depends on the particles' cumulative acceleration along their orbits. To quantify how the plasma is heated, numerical simulations are required. This thesis aims to provide a numerical framework that can simulate the coupling of the wave from the antenna to the plasma, the wave propagation and dissipation inside the plasma, as well as the acceleration of individual ions and how they deposit their energy in the plasma. 

To this end, an iterative scheme that adds nonlocal effects to an otherwise local finite element (FE) model is developed. FE models are suitable for modeling irregular geometries and wave coupling through the cold scrape-off layer plasma, but not necessarily the hot core plasma. Examples of nonlocal effects that are added iteratively are mode conversion from the fast magnetosonic wave to the ion Bernstein wave (IBW) and up- and downshift of the parallel wavenumber. Further, the wave solver is coupled to a Fokker-Planck solver that evaluates the effect of ICRH on the ion distribution function. The models presented in this thesis are in 1D or 2D axisymmetry, but are not conceptually different from a generalization to 3D.

Abstract [sv]

Kärnfusion kan producera stora mängder energi från vanligt förekommande grundämnen på jorden utan att släppa ut koldioxid, och ger endast upphov till små mängder radioaktivt avfall. För att atomkärnor ska slås samman under förhållanden som är relevanta för jorden krävs temperaturer som överstiger 100 000 000 °C. Vid dessa temperaturer befinner sig bränslet i ett plasmatillstånd. En vanlig metod för att värma plasman är jon-cyclotronresonans-uppvärmning (ICRH), där radiovågor skickas från en antenn på kärlets vägg in i plasmat för att resonera med de roterande jonerna. Vågutbredning och dissipation i varma magnetiserade plasman är en ickelokal effekt, där plasmats svar i en given punkt beror på partiklarnas ackumulerade acceleration längs deras banor. För att kvantifiera hur ett plasma värms upp krävs numeriska simuleringar. Målet med denna avhandling är att tillhandahålla ett numeriskt ramverk för simulering av koppling av vågen från antennen till plasmat, vågutbredning och dissipation inuti plasmat, samt accelerationen av enskilda partiklar och hur de deponerar sin energi i plasmat.

För att uppnå detta har en iterativ metod som lägger till ickelokala effekter till en i övrigt lokal modell baserad på finita elementmetoden utvecklats. Den finita elementmetoden är lämplig för att modellera oregelbundna geometrier och vågkoppling genom det kalla randplasmat, men inte det varma plasmat i mitten av maskinen. Exempel på ickelokala effekter som läggs till iterativt är modkonvertering från den snabba magnetosoniska vågen till jon-Bernstein-vågen, och upp- och nedskiftet av det parallella vågtalet. Dessutom kopplas våglösaren till en Fokker-Planck-lösare som utvärderar effekten som ICRH har på jonernas fördelningsfunktion. Modellerna som presenteras i avhandlingen är i 1D eller 2D och rotationssymmetriska, men skiljer sig inte konceptuellt från en generalisering till 3D.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xi, 71
Series
TRITA-EECS-AVL ; 2025:9
Keywords
Fusion, Plasma physics, Plasma heating, Tokamak, Ion cyclotron resonance heating, Spatial dispersion
National Category
Fusion, Plasma and Space Physics
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-357971 (URN)978-91-8106-160-4 (ISBN)
Public defence
2025-01-29, https://kth-se.zoom.us/j/67880732648, F3, Lindstedtsvägen 26, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20241230

Available from: 2024-12-30 Created: 2024-12-21 Last updated: 2025-01-20Bibliographically approved

Open Access in DiVA

Zaar (2025) - Enhanced ion heating using a TWA antenna in DEMO-like plasmas(2417 kB)60 downloads
File information
File name FULLTEXT01.pdfFile size 2417 kBChecksum SHA-512
5db863b0072ee6f56e657b96ac04ba1641e8dde3b442577709e26fdc327375c8cd39754467213f85562d010d3c549cce88d720a2bf5fc2a72d423c39b001de79
Type fulltextMimetype application/pdf

Authority records

Jonsson, ThomasBähner, Lukas

Search in DiVA

By author/editor
Zaar, BjörnJonsson, ThomasBähner, LukasBilato, RobertoRagona, RiccardoVallejos, Pablo
By organisation
Electromagnetic Engineering and Fusion Science
In the same journal
Journal of Plasma Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 60 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 198 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf