kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Renewable syngas production from electrified catalytic steam reforming of biomass pyrolysis volatiles
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Process.ORCID iD: 0000-0003-0583-9721
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0001-9884-1278
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Process.
Show others and affiliations
2025 (English)In: Chemical Engineering Journal Advances, E-ISSN 2666-8211, Vol. 21, article id 100705Article in journal (Refereed) Published
Abstract [en]

Pyrolysis of biomass plus catalytic reforming of its pyrolysis volatiles is a green alternative to produce solid (biochar) and gaseous (syngas) fuels that have several valuable applications; however, this catalytic process suffers from fast deactivation, and its energy consumption is yet to be studied, factors that determine the process's feasibility in industrialisation. To address these issues, the direct electrification of a 3D-printed FeCrAl heater coated with 15.5 % Ni/Al2O3 was tested in a parametric study in the catalytic steam reforming of biomass pyrolysis volatiles, in order to investigate the effect of the S/B ratio and space–time on the syngas yield and composition. Complete bio-oil reforming was obtained at a biomass feed rate of ≤ 1 g min−1 and a S/B ratio of ≥ 2, and stability close to 100 % was estimated after over four hours of operation. Nonetheless, the produced syngas is rich in C1 – C3 gases and moderately low in H2 (≈ 2 wt %). The effect of the catalyst's structure on the bio-oil reforming and heat efficiency was complemented using CFD simulations and compared to a simple geometry based on commercial extruded monoliths. Finally, the biomass-derived syngas upgrading to H2 production was assessed using different process simulations and compared to existing H2-producing technologies in terms of energy efficiency and emissions.

Place, publisher, year, edition, pages
Elsevier BV , 2025. Vol. 21, article id 100705
Keywords [en]
3D-printed catalyst, Biomass, Electrified reforming, Syngas
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-358901DOI: 10.1016/j.ceja.2025.100705ISI: 001398202700001Scopus ID: 2-s2.0-85214564957OAI: oai:DiVA.org:kth-358901DiVA, id: diva2:1930554
Note

QC 20250127

Available from: 2025-01-23 Created: 2025-01-23 Last updated: 2025-02-26Bibliographically approved
In thesis
1. Catalyst Development and Distributed Electrified Heating in Reforming Processes for Efficient Renewable Syngas and Fuel Production
Open this publication in new window or tab >>Catalyst Development and Distributed Electrified Heating in Reforming Processes for Efficient Renewable Syngas and Fuel Production
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Efforts to mitigate climate change primarily focus on reducing globalgreenhouse gas emissions, particularly carbon dioxide (CO2). Without intervention,global warming could lead to a 3.2C temperature increase, resultingin an 18 % global GDP loss. Achieving the Paris Agreement’s goal oflimiting temperature rise to 1.5C (which if surpassed could lead to extreme climate change) requires significant cuts in GHG emissions, as outlined by theIPCC’s recommendation to decrease CO2 emissions by 45 % from 2010 levels by 2030, reaching net-zero by 2050. Biomass, with its potential for carbon neutrality or negativity, is a vital renewable feedstock, convertible into greenfuels via thermochemical processes like gasification, pyrolysis, and anaerobic digestion. However, these processes face challenges, such as catalyst deactivationand high energy demands. Additive manufacturing and electrification are emerging solutions, offering enhanced catalyst stability and increased energy efficiency by reducing reliance on fuel combustion. This doctoral thesis focuses on an extensive overview of the state-of-theart of renewable feedstocks with a focus on its challenges and perspective, as well as investigative work based on these findings. The latter opened the pathfor the design, fabrication, electrification and testing of such 3D-printed catalysisin the catalytic reforming of renewable feedstocks. The experimental workwas aided by CFD simulations, and proofs-of-concept were developed using process simulation software and techno-economic analysis. The experimental results show a successful demonstration of the electrified catalytic reforming technology of biomass pyrolysis volatiles for syngas production, resulting incomplete bio-oil reforming to syngas, with a highest yield of 0.071 g H2 g−1 biomass with excellent catalyst stability and energy efficiency of 66 %. The CFD results show how the lattice structure of the 3D-printed catalyst resultsin a higher surface area and improved transport phenomena, which resultin enhanced mass and heat transfer properties. Furthermore, this novel 3D printed catalyst was tested for catalytic dry reforming of synthetic biogas using induction as heat source, resulting in complete reforming to syngas with minimal coke deposition, compared to commercially available catalysts, highlighting the effect of the catalyst’s geometry on its stability. Based on the electrified catalytic reforming technology, process designand development at an industrial scale were investigated to achieve integration with product upgrading (such as synthetic natural gas, i.e. SNG, and H2 production). The developed processes were compared with non-electrified reforming technologies using mass and energy balances, as well as using techno-economic analyses, sensitivity analyses, and CO2-equivalent analyses. Regarding SNG production, the results show a production cost of 18 SEK kg−1 SNG, toward a selling price of 27 SEK kg−1 SNG, resulting in an economic profit: capital investment recovery (break-even point) within two years of operation and a net cash flow of 5,000 MSEK after 20 years. In terms of process parameters the results show susceptibility to high steam-to-biomassratios and the market price of both biomass and biochar. Regarding H2 production,electrified catalytic reforming technology results in 93 % reduction of the CO2-equivalents compared to industrial natural gas reforming.

Abstract [sv]

Insatser för att mildra klimatförändringarna fokuserar främst på att minska

de globala utsläppen av växthusgaser, särskilt koldioxid (CO2). Utan ingri-

pande åtgärder kan den globala uppvärmningen leda till en temperaturökning

på 3,2 C, vilket kan resultera i en global BNP-förlust på 18 %. För att uppnå

Parisavtalets mål att begränsa temperaturökningen till 1,5 C krävs betydande

minskningar av utsläppen av växthusgaser, vilket beskrivs i IPCC:s rekommen-

dation att minska CO2-utsläppen med 45 % från 2010 års nivåer till 2030 års

nivåer senast i 2050. Biomassa, med sin potential för kol- neutralitet eller nega-

tivitet, är ett viktigt förnybart råmaterial som kan omvandlas till gröna bränslen

via termokemiska processer som förgasning, pyrolys och anaerob rötning. Dessa

processer står dock inför utmaningar, såsom katalysatordeaktivering och höga

energibehov. Friformsframställning och elektrifiering är nya lösningar som er-

bjuder förbättrad katalysatorstabilitet och ökad energieffektivitet genom att

minska beroendet av fossil bränsleförbränning.

Denna doktorsavhandling fokuserar på en omfattande litteraturstudie av

det senaste inom förnybar energi med fokus på dess utmaningar och perspektiv,

samt utredningsarbete baserat på denna studie. Det senare möjliggjorde design,

tillverkning, elektrifiering och testning av en innovativ 3D-printad katalysator i

den katalytiska reformeringen av förnybara energikällor. Som komplement till

det experimentella arbetet användes CFD-simuleringar, och koncepttest utveck-

lades med hjälp av processimuleringsmjukvara och teknisk-ekonomisk analys.

De experimentella resultaten visade en framgångsrik demonstration av den elek-

trifierade katalytiska reformeringen av biomassapyrolysånga för syngasproduk-

tion. Dessa resulterade i fullständig biooljereformering, med ett högsta utbyte

på 0,071 g H2 g−1 biomassa med utmärkt katalysatorstabilitet och energief-

fektivitet på 66 %. CFD-resultaten visade hur gitterstrukturen hos den 3D-

printade katalysatorn resulterar i en högre ytarea och förbättrade transportpro-

cesser, vilket resulterar i förbättrade massa- och värmeöverföringsegenskaper.

Dessutom testades denna 3D-printade katalysator för katalytisk torreformering

av syntetisk biogas med induktion som värmekälla. Det resulterade i fullständig

reformering till syngas med minimal koksavsättning, jämfört med kommersiellt

tillgängliga katalysatorer, vilket framhäver vilken effekt katalysatorns geometri

har på dess stabilitet.

Baserat på den elektrifierade katalytiska reformeringstekniken undersöktes

process- och designutveckling i industriell skala för att kunna integrera med pro-

duktuppgradering, såsom produktion av syntetisk naturgas (SNG) och vätgas.

De utvecklade processerna jämfördes med icke-elektrifierade reformeringstekniker

med hjälp av massa- och energibalanser, samt teknoekonomiska analyser, känslighetsanalyser

och CO2-ekvivalenter. Gällande SNG-produktion visade resultaten en produk-

tionskostnad på 18 SEK kg−1 SNG, mot ett försäljningspris på 27 SEK kg−1

SNG, vilket resulterar i en ekonomisk vinst: återinvestering inom två års drift

och ett nettokassaflöde på 5.000 MSEK efter 20 år. Resultaten visade också

kännslighet för höga ånga-till-biomassa-förhållanden och marknadspriset för

både biomassa och biokol. Dessutom visade resultaten att vätgasproduktionen genom elektrifierad katalytisk reformeringsteknik resulterar i 93 % minskning av CO2-ekvivalenter jämfört med industriell naturgasreformering.

Place, publisher, year, edition, pages
Stockholm: Kungliga tekniska högskolan, 2025. p. 123
Series
TRITA-ITM-AVL ; 2025:2
Keywords
biomass, renewable fuels, hydrogen, syngas, reforming processes, additive manufacturing, electrification
National Category
Chemical Engineering
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-360504 (URN)978-91-8106-173-4 (ISBN)
Public defence
2025-04-11, Sal F3 / https://kth-se.zoom.us/j/62098327132, Lindstedtsvägen 26-28, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2025-03-07 Created: 2025-02-26 Last updated: 2025-04-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bolívar Caballero, José JuanYang, HanminGulshan, SaminaJönsson, Pär G.Yang, Weihong

Search in DiVA

By author/editor
Bolívar Caballero, José JuanYang, HanminGulshan, SaminaJönsson, Pär G.Yang, Weihong
By organisation
ProcessMaterials Science and Engineering
In the same journal
Chemical Engineering Journal Advances
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 69 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf