kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Harnessing cell aggregates for enhanced adeno‐associated virus manufacturing: Cultivation strategies and scale‐up considerations
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Centre for Advanced BioProduction by Continuous Processing, AdBIOPRO.ORCID iD: 0009-0002-0379-016X
KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Engineering.ORCID iD: 0000-0002-5391-600X
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Centre for Advanced BioProduction by Continuous Processing, AdBIOPRO.ORCID iD: 0000-0002-5370-4621
2025 (English)In: Biotechnology progress (Print), ISSN 8756-7938, E-ISSN 1520-6033Article in journal (Refereed) Published
Abstract [en]

The possibility to produce recombinant adeno-associated virus (rAAV) by adherent HEK293T cells was studied in a stirred tank bioreactor (STR) culture of cell aggregates. A proof-of-concept of rAAV production was successfully demonstrated in a process where single cells were first expanded, then cell aggregates were formed by dilution into a different medium 1 day before triple plasmid transfection was conducted. An alternative approach for the STR inoculation using a seed taken from a high cell density perfusion (HCDP) culture was also investigated. It was, however, found that the spent medium of the HCDP inhibited the transfection of HEK293T cell aggregates, which was confirmed when testing with single-cell suspension culture. The formation of aggregates in shaken multi-well plates was also investigated to develop a screening system using the average power input as a scale-down criterion, which revealed that cell aggregates could be generated in 12-well plates, however with a larger size than in a STR. Taking into account the reported higher rAAV production of adherent cells in comparison with single cells for triple-plasmid transfection, HEK293T cell aggregates can possibly surpass single-cell suspension in space–time rAAV yield. The formation of HEK293T cell aggregates in a STR system offers a promising approach for scaling up and intensifying rAAV production by triple-plasmid transfection, in comparison with traditional 2D scale-up methods.

Place, publisher, year, edition, pages
Wiley , 2025.
National Category
Bioprocess Technology
Identifiers
URN: urn:nbn:se:kth:diva-359346DOI: 10.1002/btpr.3522ISI: 001402571700001Scopus ID: 2-s2.0-85215685084OAI: oai:DiVA.org:kth-359346DiVA, id: diva2:1932896
Funder
Vinnova, 2016‐05181EU, Horizon 2020, 813453Available from: 2025-01-30 Created: 2025-01-30 Last updated: 2025-02-18Bibliographically approved
In thesis
1. Advanced Process Development in Gene and Cell Therapies
Open this publication in new window or tab >>Advanced Process Development in Gene and Cell Therapies
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A paradigm shift in the treatment of many genetic and acquired diseases is

underway. At the heart of this change are gene and cell therapies. They offer the

potential to cure many conditions that previously carried a poor prognosis. These

life changing therapeutics make use of complex biological modalities to target

underlying disease mechanisms, offering precise and effective treatments. The

complexity of these products, however, presents a barrier to their widespread

accessibility, in part due to the high cost of manufacturing.

Gene therapies use heavily modified viruses, called viral vectors, to insert

genetic material into a patient’s cells to restore normal function. The most used

viral vector in gene therapy is based on Adeno-associated virus (AAV). Currently

a major bottleneck for AAV-based therapeutics is their production. Not only does

the high manufacturing cost impact the accessibility of these treatments, the

limited production capacity reduces their availability.

Cell therapy is a broad category of innovative treatments that use cells as the

therapeutic substance. A category within cell therapy is immune cell therapy,

which uses cells from the body’s immune system to combat a wide range of

conditions, such as cancer, infectious disease, and autoimmune disorders. A

promising candidate in immune cell therapy are natural killer (NK) cells. These

cells are highly effective in the recognition and elimination of tumor cells, making

them a valuable tool in cancer immunotherapy. Though, like AAV-based

therapeutics, inefficiencies in their production limits their accessibility and

availability.

The aim of this thesis is to investigate these production bottlenecks and

provide potential solutions to overcome them. The first section investigates

methods to improve the scalability and efficiency of recombinant AAV (rAAV)

production, using techniques such as continuous manufacturing and

intensification. Continuous production is particularly well suited to the production

of rAAVs due to its ability to address critical challenges encountered during the

manufacturing process. Intensification offers an interesting complementary

approach to increasing the efficiency of rAAV manufacturing, by producing more

in the same amount of space. In papers I and II proof-of-concept systems were

developed that enabled the several fold increase in rAAV production.

The second part of this thesis focuses on the use of single-cell RNA

sequencing (scRNA-seq) to study processes in rAAV and NK cell production.

scRNA-seq is an advanced tool that gives an immense wealth of data that can be

used to gain deep insights into production processes. Previously, this tool has seen

limited use in process development, but the outcomes of papers III and IV show 

that it can be highly effective in this setting. Paper III highlighted a phenomenon

in the production of rAAV that severely limits production efficiency. In fact,

strategies were proposed that could potentially improve the production capacity

40-fold. Paper IV studied the donor-to-donor heterogeneity of a manufacturing

process for NK cells and identified key parameters that have the potential to

predict manufacturing performance. Additionally, these parameters could

potentially be used to not only monitor but to control the process, improving

yields.

This thesis investigates a wide array of topics in the field of gene and cell

therapies, from adherent cell culture to single-cell transcriptomics. It covers

aspects in process development of both gene and cell therapies, provides strategies

for the several-fold improvement of current rAAV manufacturing systems,

highlights a phenomenon holding back further advances in rAAV production and

suggests key process parameters that can be used to track and potentially improve

the performance of NK cell manufacturing.

Abstract [sv]

Det pågår just nu ett paradigmskifte i behandlingen av många genetiska och

förvärvade sjukdomar. I centrum för denna förändring står gen- och cellterapier.

Dessa terapier har potential att bota många tillstånd som tidigare hade en dålig

prognos. Dessa livsförändrande terapier använder komplexa biologiska

modaliteter för att rikta sig mot underliggande sjukdomsmekanismer, vilket

möjliggör mer precisa och effektiva behandlingar. Komplexiteten hos dessa

produkter utgör dock en barriär för deras breda tillgänglighet, delvis på grund av

de höga tillverkningskostnaderna.

Genterapier använder kraftigt modifierade virus, så kallade virala vektorer,

för att införa genetiskt material i en patients celler och därmed återställa normal

funktion. Den mest använda virala vektorn i genterapi är baserad på

adenoassocierat virus (AAV). För närvarande är produktionen en stor flaskhals för

AAV-baserade terapier. De höga tillverkningskostnaderna påverkar inte bara

dessa behandlingars tillgänglighet, utan den begränsade produktionskapaciteten

minskar också tillgången.

Cellterapi är en bred kategori av innovativa behandlingar där celler används

som den terapeutiska substansen. En underkategori inom cellterapi är

immuncellterapi, där celler från kroppens immunsystem används för att bekämpa

en rad olika tillstånd, såsom cancer. En lovande kandidat inom immuncellterapi är

så kallade natural killer-celler (NK-celler). Dessa celler kan mycket effektivt

känna igen och eliminera tumörceller, vilket gör dem till ett värdefullt verktyg

inom cancerimmunterapi. Precis som för AAV-baserade terapier begränsar dock

produktionen tillgängligheten av och tillgången på dessa livsförändrande

behandlingar.

Syftet med denna avhandling är att undersöka dessa

produktionsbegränsningar och föreslå potentiella lösningar för att övervinna dem.

Den första delen undersöker metoder för att förbättra skalbarheten och

effektiviteten hos rekombinanta AAV (rAAV)-vektorer genom teknikerna för

kontinuerlig produktion och intensifiering. Kontinuerlig produktion kan vara

särskilt väl lämpad för produktionen av rAAV på grund av utmaningar vid

uppskalning. Intensifiering erbjuder en intressant parallell metod för att öka

effektiviteten i rAAV-tillverkning genom att producera mer i samma volym. I

artikel I och II utvecklas proof-of-concept-system som möjliggör en flera gånger

större rAAV-produktion.

Den andra delen av denna avhandling fokuserarfokuserade på användningen

av så kallad singelcellstranskriptomik för att studera processer inom rAAV- och

NK-cellsproduktion. Singelcells-RNA-sekvensering (scRNA-seq) är ett avancerat verktyg

som ger en enorm mängd data och kan användas för att få djup insikt i

produktionsprocesser. Tidigare har detta verktyg använts i begränsad omfattning

inom processutveckling, men resultaten från artikelartiklarna III och IV visar att

det kan vara mycket effektivt i detta sammanhang. Artikel III belyser ett fenomen

inom rAAV-produktion som begränsar produktionseffektiviteten. Här föreslås

strategier som potentiellt kan göra produktionskapaciteten 40 gånger större.

Artikel IV studerarstuderade variabiliteten i en produktionssprocess för NK-celler.

Nyckelparametrar identifieras som har potential att förutsäga

tillverkningsprocessens prestanda flera veckor i förväg. Dessa nyckelparametrar

skulle dessutom kunna justeras för att förbättra produktionsprocessen.

Denna avhandling berör en rad ämnen inom gen- och cellterapifältet, från

adherent cellodling till singelcellstranskriptomik. Den täcker aspekter av

processutveckling för både gen- och cellterapier, presenterarpresenterat strategier

för mångdubbel förbättring av nuvarande rAAV-tillverkningssystem, belyser ett

fenomen som begränsar ytterligare framsteg inom rAAV-produktion och föreslår

nyckelparametrar som kan användas för att övervaka och potentiellt förbättra

prestandan för produktionen av NK-celler.

 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 117
Series
TRITA-CBH-FOU ; 2025:3
Keywords
Gene Therapy, Cell Therapy, AAV (Adeno-Associated Virus), Viral Vectors, NK Cells (Natural Killer Cells), Immune Cell Therapy, Single-Cell Transcriptomics (scRNA-seq), Bioprocessing, Process Development, Continuous Production, Intensification, Manufacturing Bottlenecks, Genterapi, Cellterapi, AAV (adenoassocierat virus), Virala vektorer, NKceller (natural killer-celler), Immuncellsterapi, Singelcells-RNAsekvenseringcellproduktion (scRNA-seq), Bioprocessering, Processutveckling, Kontinuerlig produktion, Intensifiering, Produktionsflaskhalsar
National Category
Engineering and Technology Industrial Biotechnology Bioprocess Technology Medical Biotechnology (Focus on Cell Biology, (incl. Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) Cell and Molecular Biology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-360154 (URN)978-91-8106-203-8 (ISBN)
Public defence
2025-03-14, E3, Osquars backe 2, 114 28, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2025-02-19

Available from: 2025-02-19 Created: 2025-02-18 Last updated: 2025-02-25Bibliographically approved

Open Access in DiVA

fulltext(5515 kB)64 downloads
File information
File name FULLTEXT01.pdfFile size 5515 kBChecksum SHA-512
bc84c6526e50e25aff5105fcf7635f3170824d100ae7b1d734694f040eb06a1374dc37992430d96c6044f9fa16694bfc7000b2d92ba465f52a81dda4dd4183dc
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Ladd, BrianGräslund, TorbjörnChotteau, Véronique

Search in DiVA

By author/editor
Ladd, BrianGräslund, TorbjörnChotteau, Véronique
By organisation
Industrial BiotechnologyCentre for Advanced BioProduction by Continuous Processing, AdBIOPROAlbanova VinnExcellence Center for Protein Technology, ProNovaProtein Engineering
In the same journal
Biotechnology progress (Print)
Bioprocess Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 64 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 327 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf