Modelling of Radio Frequency Heating in ASDEX Upgrade Tokamak
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE credits
Student thesis
Abstract [en]
The recent energy crisis is a reminder of the demand for sustainable energy sources as for instance fusion. Toinduce fusion reactions temperatures over 100 million degrees Celsius are needed, which requires effectiveheating methods. This project aims to model and compare different radio frequency (RF) heating scenariosin fusion plasma. The RF waves can accelerate ions, which can further impact the wave field pattern. Thisiterative relationship can be modelled with a newly developed simulation tool: FEMIC-Foppler. To achieveeffective RF heating, small concentrations of either helium-3 or hydrogen is added to a deuterium plasmaenvironment. With different densities and coupled power for RF heating modelling, nonlinear effects inFEMIC-Foppler are analysed. The results show that when increasing the amount of coupled power andlowering the density, nonlinear effects become more apparent with the FEMIC-Foppler modeling, as theenergy per particle increases. Comparing hydrogen and helium-3 minority, the wave absorption for hydrogenminority is stronger since both ion species resonate with the RF waves, accelerating more fast ions andtherefore creating a stronger nonlinearity in FEMIC-Foppler. The impact of this nonlinearity is notable in thewave field pattern and plasma properties.
Abstract [sv]
Den senaste energikrisen är påminner om efterfrågan för hållbara energikällor, såsom fusion. För att inducerafusionreaktioner behövs temperaturer över 100 miljoner grader Celsius, vilket kräver effektivauppvärmningsmetoder. Det här projektet har som syfte att modellera och jämföra olika scenarier förradiovågsuppvärmning i fusionsplasma. Radiovågor kan accelerera joner som i sin tur kan påverkavågfältsmönstret. Detta iterativa förhållande kan modelleras med ett nyligen utvecklat simuleringsverktyg:FEMIC-Foppler. För att uppnå en effektiv radiovågsuppvärmning tillsätts små koncentrationer av antingenhelium-3 eller väte till deuteriumplasma. Med olika densitetsprofiler och mängd absorberad effekt för RF-uppvärmningsmodellering analyseras icke-linjära effekter i FEMIC-Foppler. Resultaten visar att närmängden absorberad effekt ökar och densiteten minskar, blir de icke-linjära effekterna tydligare medFEMIC-Foppler-modelleringen, eftersom energin per partikel ökar. Vid jämförelse mellan minoritete av väteeller helium-3 är vågabsorptionen för väteminoriteten starkare eftersom båda jonslagen resonerar med RF-vågorna, vilket accelererar fler snabba joner och därmed skapar en starkare icke-linjäritet i FEMIC-Foppler.Effekten av denna icke-linjäritet är märkbar i vågfältsmönstret och i plasmaegenskaperna.
Place, publisher, year, edition, pages
2024. , p. 389-398
Series
TRITA-EECS-EX ; 2024:167
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-359372OAI: oai:DiVA.org:kth-359372DiVA, id: diva2:1933044
Supervisors
Examiners
Projects
Kandidatexamensarbete Elektroteknik EECS 20242025-01-302025-01-30