kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Machine Learning Based Resource Allocation for Future Wireless Networks
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0002-6864-6970
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Efficient resource allocation is a critical challenge in future wireless networks, particularly as user demands, network densities and network complexities continue to grow. Traditionally, channel state information (CSI) of the user terminals is utilized for resource allocation. However, with increased network density and taking into account the existence of mobile users, CSI-based resource allocation poses significant performance overhead. This work explores a novel approach to resource allocation by leveraging machine learning models trained on user coordinate information. Specifically, we formulate the resource allocation problem in three ways: (1) modulation and coding scheme (MCS) prediction for transport capacity maximization, (2) resource allocation in noise-limited systems based on user positions, and (3) resource allocation in interference-limited systems to ensure fairness while maximizing capacity.We consider two user placement scenarios for performance evaluation: random drop scenario (RDS), where users are randomly distributed in the propagation environment, and mobility model scenario (MMS), where user positions follow a linear trajectory. 

We perform extensive evaluations to compare the datasets from RDS across key metrics, including the number of training samples, computational complexity, and model performance under varying channel conditions and erroneous position information. Our results demonstrate the viability of coordinates-based resource allocation through machine learning in adapting to complex wireless environments, achieving efficient and scalable resource allocation while maintaining robust performance under dynamic and imperfect conditions. Our proposed coordinates-based resource allocation scheme performs at par with the CSI-based resource allocation scheme, achieving at least 90% performance in an interference-limited system having changing scatterers' density. In addition, the scheme significantly outperforms the geometric-based resource allocation scheme, which intuitively applies the coordinates' information of users for distance-dependent resource allocation. The MMS dataset serves to determine the implementation cost of the proposed scheme, by considering a realistic channel model where the data samples are collected on a continual basis in the system. With this approach, we compare performance in terms of training time, prediction time, and memory footprint of the machine learning models. The results show that the coordinates-based resource allocation scheme can be used reliably for efficient resource allocation while incurring a low to moderate implementation cost for noise-limited and interference-limited system, respectively. This study highlights the potential of machine learning-driven resource management for future wireless networks, paving the way for intelligent, adaptive, and efficient communication systems.

Abstract [sv]

Effektiv resursallokering är en kritisk utmaning i framtida trådlösa nätverk, särskilt när användarkrav, nätverkstätheter och nätverkskomplexitet fortsätter att växa. Traditionellt används kanaltillståndsinformation (CSI) för användar-terminalerna för resursallokering. Men med ökad nätverkstäthet och med hänsyn till förekomsten av mobila användare, innebär CSI-baserad resursallokering betydande prestandakostnader.Detta arbete utforskar ett nytt tillvägagångssätt för resursallokering genom att utnyttja maskininlärnings-modeller som tränats på användarkoordinatinformation. Specifikt formulerar vi resursallokeringsproblemet på tre sätt: (1) modulerings- och kodningsschema (MCS) förutsägelse för transportkapacitetsmaximering, (2) resursallokering i bullerbegränsade system baserat på användarpositioner och (3) resursallokering i störningsbegränsade system för att säkerställa rättvisa samtidigt som kapaciteten maximeras. Vi överväger två scenarier för användarplacering för prestandautvärdering: slumpmässigt droppscenario (RDS), där användare fördelas slumpmässigt i spridningsmiljön, och mobilitetsmodellscenario (MMS), där användarpositioner följer en linjär bana.

Vi utför omfattande utvärderingar för att jämföra datamängder från RDS över nyckelmått, inklusive antalet träningsprover, beräkningskomplexitet och modellprestanda under varierande kanalförhållanden och felaktig positionsinformation. Våra resultat visar genomförbarheten av koordinatbaserad resursallokering genom maskininlärning för att anpassa sig till komplexa trådlösa miljöer, uppnå effektiv och skalbar resursallokering samtidigt som robust prestanda bibehålls under dynamiska och ofullkomliga förhållanden. Vårt föreslagna koordinatbaserade resursallokeringsschema presterar i paritet med det CSI-baserade resursallokeringsschemat, och uppnår minst 90% prestanda i ett störningsbegränsat system med förändrad spridardensitet. Dessutom överträffar schemat avsevärt det geometriskt baserade resursallokeringsschemat, som intuitivt tillämpar koordinaternas information om användare för avståndsberoende resursallokering.MMS-datauppsättningen tjänar till att bestämma implementeringskostnaden för det föreslagna schemat, genom att överväga en realistisk kanalmodell där dataproverna samlas in kontinuerligt i systemet. Med detta tillvägagångssätt jämför vi prestanda i form av träningstid, förutsägelsetid och minnesfotavtryck för maskininlärningsmodellerna. Resultaten visar att det koordinatbaserade resursallokeringsschemat kan användas på ett tillförlitligt sätt för effektiv resursallokering samtidigt som det medför en låg till måttlig implementeringskostnad för bullerbegränsade respektive störningsbegränsade system. Denna studie belyser potentialen hos maskininlärningsdriven resurshantering för framtida trådlösa nätverk, vilket banar väg för intelligenta, adaptiva och effektiva kommunikationssystem.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. , p. ix, 180
Series
TRITA-EECS-AVL ; 2025:18
Keywords [en]
Resource Allocation, Machine Learning, Wireless Communication Systems
Keywords [sv]
resursfördelning, maskininlärning, trådlösa kommunikationssystem
National Category
Communication Systems
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-359405ISBN: 978-91-8106-181-9 (print)OAI: oai:DiVA.org:kth-359405DiVA, id: diva2:1933329
Public defence
2025-02-27, https://kth-se.zoom.us/w/63341563274?tk=IJQu8Euz_YD8sl3kDLIxrxkOcD5zqA7i24342Dl_cEo.DQcAAAAOv3ONihZTRXQ3Z0s3dFRpQ2M1bnowemtOaVpBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20250131

Available from: 2025-01-31 Created: 2025-01-31 Last updated: 2025-01-31Bibliographically approved
List of papers
1. Random Forests Resource Allocation for 5G Systems: Performance and Robustness Study
Open this publication in new window or tab >>Random Forests Resource Allocation for 5G Systems: Performance and Robustness Study
2018 (English)Conference paper, Published paper (Refereed)
National Category
Engineering and Technology
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-223418 (URN)10.1109/WCNCW.2018.8369028 (DOI)000442393300056 ()2-s2.0-85048899054 (Scopus ID)
Conference
International Workshop on Big Data with Computational Intelligence for Wireless Networking (IEEE WCNC BDCIWN)
Note

QC 20180327

Available from: 2018-02-21 Created: 2018-02-21 Last updated: 2025-01-31Bibliographically approved
2. Random forests for resource allocation in 5G cloud radio access networks based on position information
Open this publication in new window or tab >>Random forests for resource allocation in 5G cloud radio access networks based on position information
2018 (English)In: EURASIP Journal on Wireless Communications and Networking, ISSN 1687-1472, E-ISSN 1687-1499, Vol. 2018, no 1, article id 142Article in journal (Refereed) Published
Abstract [en]

Next generation 5G cellular networks are envisioned to accommodate an unprecedented massive amount of Internet of things (IoT) and user devices while providing high aggregate multi-user sum rates and low latencies. To this end, cloud radio access networks (CRAN), which operate at short radio frames and coordinate dense sets of spatially distributed radio heads, have been proposed. However, coordination of spatially and temporally denser resources for larger sets of user population implies considerable resource allocation complexity and significant system signalling overhead when associated with channel state information (CSI)-based resource allocation (RA) schemes. In this paper, we propose a novel solution that utilizes random forests as supervised machine learning approach to determine the resource allocation in multi-antenna CRAN systems based primarily on the position information of user terminals. Our simulation studies show that the proposed learning based RA scheme performs comparably to a CSI-based scheme in terms of spectral efficiency and is a promising approach to master the complexity in future cellular networks. When taking the system overhead into account, the proposed learning-based RA scheme, which utilizes position information, outperforms legacy CSI-based scheme by up to 100%. The most important factor influencing the performance of the proposed learning-based RA scheme is antenna orientation randomness and position inaccuracies. While the proposed random forests scheme is robust against position inaccuracies and changes in the propagation scenario, we complement our scheme with three approaches that restore most of the original performance when facing random antenna orientations of the user terminal.

Place, publisher, year, edition, pages
Springer, 2018
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-238855 (URN)10.1186/s13638-018-1149-7 (DOI)000447851900004 ()2-s2.0-85048290841 (Scopus ID)
Note

QC 20181113

Available from: 2018-11-13 Created: 2018-11-13 Last updated: 2025-01-31Bibliographically approved
3. On the feasibility of coordinates-based resource allocation through machine learning
Open this publication in new window or tab >>On the feasibility of coordinates-based resource allocation through machine learning
2019 (English)In: 2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2019, article id 9013883Conference paper, Published paper (Refereed)
Abstract [en]

Over the last decade there has been a large research interest in exploiting terminal positions for various cellular network services and communication aspects. However, the relevance of terminal coordinates for resource allocation is relatively unexplored to date. In this work, we thus take a first step in that direction by studying coordinates-based resource allocation in an arguably favorable, and straightforward set-up. In particular, we consider the usage of supervised machine learning for resource allocation. Our results show that for the studied scenario, coordinates-based resource allocation can achieve a comparable performance to a CSI-based comparison scheme. While the main limiting factors are channel uncertainty as well as the accuracy of the terminal coordinates, in particular more complex machine learning schemes like Random Forests are able to provide some robustness despite the above mentioned noisy features. 

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers Inc., 2019
Keywords
Machine learning, Position coordinates, Resource allocation, Wireless communication system, Decision trees, Random forests, Supervised learning, Cellular network, Channel uncertainties, Complex machines, Research interests, Supervised machine learning, Terminal position, Learning systems
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-274110 (URN)10.1109/GLOBECOM38437.2019.9013883 (DOI)000552238604008 ()2-s2.0-85081971928 (Scopus ID)
Conference
2019 IEEE Global Communications Conference, GLOBECOM 2019; Hilton Waikoloa Village ResortWaikoloa; United States; 9 December 2019 through 13 December 2019
Note

QC 20200909

Part of ISBN 9781728109626

Available from: 2020-07-02 Created: 2020-07-02 Last updated: 2025-01-31Bibliographically approved
4. Coordinates-Based Resource Allocation Through Supervised Machine Learning
Open this publication in new window or tab >>Coordinates-Based Resource Allocation Through Supervised Machine Learning
2021 (English)In: IEEE Transactions on Cognitive Communications and Networking, E-ISSN 2332-7731, Vol. 7, no 4, p. 1347-1362Article in journal (Refereed) Published
Abstract [en]

Appropriate allocation of system resources is essential for meeting the increased user-traffic demands in the next generation wireless technologies. Traditionally, the system relies on channel state information (CSI) of the users for optimizing the resource allocation, which becomes costly for fast-varying channel conditions. In such cases, an estimate of the terminals' position information provides an alternative to estimating the channel condition. In this work, we propose a coordinates-based resource allocation scheme using supervised machine learning techniques, and investigate how efficiently this scheme performs in comparison to the traditional approach under various propagation conditions. We consider a simple system setup as a first step, where a single transmitter serves a single mobile user. The performance results show that the coordinates-based resource allocation scheme achieves a performance very close to the CSI-based scheme, even when the available user's coordinates are erroneous. The performance is quite consistent, especially when complex learning frameworks like random forest and neural network are used for resource allocation. In terms of applicability, a training time of about 4 s is required for coordinates-based resource allocation using random forest algorithm, and the appropriate resource allocation is predicted in less than 90 mu s with a learnt model of size <1 kB.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021
Keywords
Wireless communication system, resource allocation, position information, machine learning
National Category
Telecommunications Signal Processing Communication Systems
Identifiers
urn:nbn:se:kth:diva-306759 (URN)10.1109/TCCN.2021.3072839 (DOI)000728144400029 ()2-s2.0-85104253160 (Scopus ID)
Note

QC 20211230

Available from: 2021-12-30 Created: 2021-12-30 Last updated: 2025-01-31Bibliographically approved
5. Machine Learning Based Fair Resource Allocation Leveraging User Coordinates in Multi-Antenna Systems
Open this publication in new window or tab >>Machine Learning Based Fair Resource Allocation Leveraging User Coordinates in Multi-Antenna Systems
2024 (English)Manuscript (preprint) (Other academic)
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-359394 (URN)
Available from: 2025-01-30 Created: 2025-01-30 Last updated: 2025-01-31Bibliographically approved

Open Access in DiVA

Kappa(10060 kB)131 downloads
File information
File name SUMMARY01.pdfFile size 10060 kBChecksum SHA-512
b7f28e5c7ec113e80ca09c98d71942181e7f1dd606c4ad3b4aa81b9cb06efcd5d15d4bffc14f8a988695b77856626553f871cc40b926089bb4f54fe9b476d12d
Type summaryMimetype application/pdf
References(127 kB)49 downloads
File information
File name REFERENCES01.pdfFile size 127 kBChecksum SHA-512
effed81156df694ea207c27c882b2bfc46787b95318584eaa053ed2f95ab39394a9313aea48a9136a74c383d564a46be69f02f5a5f5396448a3fbc29a34a21ac
Type referencesMimetype application/pdf

Authority records

Imtiaz, Sahar

Search in DiVA

By author/editor
Imtiaz, Sahar
By organisation
Information Science and Engineering
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2093 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf