kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Localized Nanopore Fabrication in Silicon Nitride Membranes by Femtosecond Laser Exposure and Subsequent Controlled Breakdown
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0000-0003-1917-6201
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.ORCID iD: 0000-0002-2810-2151
Central Facility for Electron Microscopy (GFE), RWTH Aachen University, Aachen 52056, Germany.
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0009-0004-4647-2932
Show others and affiliations
2025 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 17, no 5, p. 8737-8748Article in journal (Refereed) Published
Abstract [en]

Controlled breakdown has emerged as an effective method for fabricating solid-state nanopores in thin suspended dielectric membranes for various biomolecular sensing applications. On an unpatterned membrane, the site of nanopore formation by controlled breakdown is random. Nanopore formation on a specific site on the membrane has previously been realized using local thinning of the membrane by lithographic processes or laser-assisted photothermal etching under immersion in an aqueous salt solution. However, these approaches require elaborate and expensive cleanroom-based lithography processes or involve intricate procedures using custom-made equipment. Here, we present a rapid cleanroom-free approach using single pulse femtosecond laser exposures of 50 nm thick silicon nitride membranes in air to localize the site of nanopore formation by subsequent controlled breakdown to an area less than 500 nm in diameter on the membrane. The precise positioning of the nanopores on the membrane could be produced both using laser exposure powers which caused significant thinning of the silicon nitride membrane (up to 60% of the original thickness locally), as well as at laser powers which caused no visible modification of the membrane at all. We show that nanopores made using our approach can work as single-molecule sensors by performing dsDNA translocation experiments. Due to the applicability of femtosecond laser processing to a wide range of membrane materials, we expect our approach to simplify the fabrication of localized nanopores by controlled breakdown in a variety of thin film material stacks, thereby enabling more sophisticated nanopore sensors.

Place, publisher, year, edition, pages
American Chemical Society (ACS) , 2025. Vol. 17, no 5, p. 8737-8748
Keywords [en]
solid state nanopore, femtosecond-laser irradiation, laser processing, controlled breakdown, dielectric breakdown, DNA translocation, nanopore
National Category
Nanotechnology for/in Life Science and Medicine
Identifiers
URN: urn:nbn:se:kth:diva-359693DOI: 10.1021/acsami.5c00255ISI: 001408096000001OAI: oai:DiVA.org:kth-359693DiVA, id: diva2:1935827
Funder
Swedish Research Council, 2018-06169
Note

QC 20250210

Available from: 2025-02-07 Created: 2025-02-07 Last updated: 2025-04-10Bibliographically approved
In thesis
1. Bridging Scales – Nanofabrication and Microfluidics for Sensing and Cell Culture Platforms
Open this publication in new window or tab >>Bridging Scales – Nanofabrication and Microfluidics for Sensing and Cell Culture Platforms
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biology and medicine have seen groundbreaking discoveries, from ion channels to induced pluripotent stem cells, resulting in a paradigm shift. The advancements in physical sciences and engineering have always been pivotal in unlocking mysteries of biology and highlighting that the new frontiers lie in deepening our understanding at the single-cell and single-molecule levels. Applying different physical and engineering principles sheds new light on our understanding of complex biological systems at the single-cell and single-molecule level, enabling the development of various technologies such as single-molecule detection, organ-on-chip platforms, and organoids. The development of these technologies offers valuable insights into disease progression and personalized therapeutic strategies. The advancements in micro and nanofabrication propel the development of sensing platforms and biological devices that pave the way for novel solutions, ensuring the best of both worlds. This thesis aims to contribute to advancing the fields of single-molecule sensing and cell therapy by integrating biological discoveries and engineering advancements to develop novel engineering toolboxes. 

The first part of this thesis introduces and describes two approaches for single-molecule sensing and detection, specifically tunneling nanogaps and solid-state nanopore-based sensing platforms. The first work reports the custom measurement setup built during the project, which facilitates automated probing and testing arrays with hundreds of tunnel junctions in liquid with integrated microfluidics, current in the pA range, and at sampling rates up to 200 kHz. This setup highlights key electrical and microfluidic components and design choices to achieve a scalable measurement method, providing a platform for further studies and development in this field and enabling the potential for dynamic sensing. The second work in this thesis investigates the fabrication and electrical behavior of tunnel junctions in various gaseous and liquid media by feedback-controlled electromigration of microfabricated gold nanoconstrictions. This work maps the conductance stability and characteristics of the resulting tunnel junctions, highlighting various considerations and challenges in working with on-chip integrated tunnel junctions to guide future efforts. 

In the third work, we shift our focus to solid-state nanopores and demonstrate that the nanopores fabricated by controlled dielectric breakdown could be localized at the site of femtosecond laser exposure on a pristine silicon nitride membrane. We analyze the sensing potential of these nanopores by the translocation of double-stranded DNA through the pores. The fourth work uses the solid-state nanopore platform to detect and study the binding of Estrogen Receptor Alpha to the Estrogen Receptor Elements on the DNA. The work on tunnel junction and solid-state nanopore-based sensing modalities holds potential for further development in the field of single-(bio)molecule sensing.

The second part of this thesis presents a microfluidic chip platform that enables simple and fast reprogramming of somatic cells, such as fibroblasts, into induced pluripotent stem cells (iPSCs). These iPSCs can then be differentiated further into functional ectodermal cell types towards neural lineage, resulting in neural stem cells on the chip. Furthermore, using bulk-RNA sequencing, we observed that the microfluidic platform boosted commitment toward generating neural stem cells while reducing biological variability compared to a conventional well plate. Our method provides a simple platform with considerably reduced reagent requirements, cellular input, and manual labor, leading to substantial cost savings and holding potential for the highly controlled generation of clinical-grade iPSCs and differentiated cells for cellular therapeutics.

Abstract [sv]

Banbrytande upptäckter inom biologi och medicin, från jonkanaler till inducerade pluripotenta stamceller, har resulterat i ett paradigmskifte. Framsteg inom fysik och ingenjörsvetenskap har varit avgörande för att avslöja biologins mysterier och belysa att framtidens nya avancemang ligger i att fördjupa vår förståelse på enskild cell- och molekylnivå. Genom att tillämpa olika fysikaliska och ingenjörsvetenskapliga principer får vi nya insikter gällande komplexa biologiska system på dessa nivåer, vilket möjliggör utvecklingen av olika teknologier såsom detektion av enskilda molekyler, organ-på-chip-plattformar och organoider. Utvecklingen av dessa teknologier ger värdefulla insikter för sjukdomsprogressioner och individanpassade terapeutiska strategier. Framstegen inom mikro- och nanofabrikation driver utvecklingen av sensorplattformar och biologiska enheter som banar väg för nya lösningar där det bästa från två världar förenas. Denna avhandling syftar till att bidra till utvecklingen av fälten för enskild molekyl-detektion och cellterapi genom att integrera biologiska upptäckter med ingenjörsvetenskapliga framsteg för att skapa nya teknologiska verktyg.

Den första delen av denna avhandling introducerar och beskriver två metoder för detektion av enskilda molekyler, specifikt tunnel-nanogap och fasta nanoporer som sensorplattformar. Den första studien rapporterar om den specialanpassade mätuppställning som byggdes under projektet och som möjliggör automatiserad avläsning och testning av arrays med hundratals tunnelövergångar i vätska med integrerad mikrofluidik, strömmar i pA-området och samplingsfrekvenser upp till 200 kHz. Systemet belyser viktiga elektriska och mikrofluidiska komponenter samt de designval som krävs för att uppnå en skalbar mätmetod, vilket skapar en plattform för vidare studier och utveckling inom detta fält och möjliggör potentialen för dynamisk detektion. Den andra studien i denna avhandling undersöker tillverkningen och den elektriska funktionen hos tunnelövergångar i olika gas- och vätskemedier genom återkopplingsstyrd elektromigration av mikrofabrikerade guldkonstriktioner. Detta arbete kartlägger ledningsstabiliteten och egenskaperna hos de resulterande tunnelövergångarna och belyser olika överväganden och utmaningar vid arbete med on-chip-integrerade tunnelövergångar för att vägleda framtida insatser.

I den tredje studien skiftar vi fokus till fasta nanoporer och demonstrerar att nanoporer, som skapats genom kontrollerad dielektrisk nedbrytning, kan lokaliseras till platsen för femtosekundslaserexponering på ett orört kiselnitridmembran. Vi analyserar sensorpotentialen hos dessa nanoporer genom translokation av dubbelsträngat DNA genom porerna. Den fjärde studien använder den fasta nanoporplattformen för att detektera och studera bindningen av östrogenreceptor alfa till östrogenreceptor-element på DNA. Arbetet med tunnelövergångar och fasta nanoporbaserade sensorplattformar har potential för vidare utveckling inom fältet för enskild-(bio)molekyl-detektion.

Den andra delen av denna avhandling presenterar en mikrofluidisk chip-plattform som möjliggör enkel och snabb omprogrammering av somatiska celler, såsom fibroblaster, till inducerade pluripotenta stamceller (iPSCs). Dessa iPSCs kan sedan vidare differentieras till funktionella ektodermala celltyper mot neural linje, vilket resulterar i neurala stamceller på chipet. Vidare observerade vi genom bulk-RNA-sekvensering att den mikrofluidiska plattformen främjade genererering av neurala stamceller samtidigt som den minskade biologisk variation jämfört med en konventionell brunnsplatta. Vår metod tillhandahåller en enkel plattform med avsevärt minskade reagenskrav, cellinsatser och manuellt arbete, vilket leder till betydande kostnadsbesparingar och har potential för högkontrollerad produktion av kliniskt godkända iPSCs och differentierade celler för cellulära terapier.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xvi, 111
Series
TRITA-EECS-AVL ; 2025:37
Keywords
nanotechnology, single-molecule sensing, solid-state nanopore, nanofabrication, microfluidics, tunnel junction, induced pluripotent stem cells, cell reprogramming
National Category
Nanotechnology
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-362324 (URN)978-91-8106-236-6 (ISBN)
Public defence
2025-05-09, https://kth-se.zoom.us/j/67018776035, F3, Lindstedtsvägen 26-28, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20250411

Available from: 2025-04-11 Created: 2025-04-10 Last updated: 2025-04-14Bibliographically approved

Open Access in DiVA

fulltext(4213 kB)94 downloads
File information
File name FULLTEXT01.pdfFile size 4213 kBChecksum SHA-512
619be0b9c9ca126cb67156aa96e63d9d498df2de614268c9a257a3c170eefe2cd6411d9faa0b500da0b24fa036e105391268b067c9959d881a2e51e459335968
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Leva, Chrysovalantou VasilikiJain, SaumeySakurai, KasumiStemme, GöranHerland, AnnaNiklaus, FrankRaja, Shyamprasad Natarajan

Search in DiVA

By author/editor
Leva, Chrysovalantou VasilikiJain, SaumeySakurai, KasumiStemme, GöranHerland, AnnaMayer, JoachimNiklaus, FrankRaja, Shyamprasad Natarajan
By organisation
Micro and NanosystemsScience for Life Laboratory, SciLifeLabNano Biotechnology
In the same journal
ACS Applied Materials and Interfaces
Nanotechnology for/in Life Science and Medicine

Search outside of DiVA

GoogleGoogle Scholar
Total: 94 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 933 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf