kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Combining Deep Learning and Street View Imagery for Urban Safety Analysis: Developing an Object Detection System to Assess Safety Perceptions in Stockholm
KTH, School of Electrical Engineering and Computer Science (EECS).
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Kombination av djupinlärning och gatubilder för säkerhetsanalys i städer : Utveckling av ett objektdetekteringssystem för att bedöma säkerhetsuppfattningar i Stockholm (Swedish)
Abstract [en]

The urban environment is designed to ensure that the quality of life of the citizens is the best possible. Thus, safety perceptions play an essential role in how urban planning and policy decisions are made. To guarantee that the well-being of the citizens is considered while building settlements, continuous and rigorous studies of how these places evolve need to be carried out. However, said task can often be laborious and time-consuming, requiring exhaustive work from experts within the urban planning field. Following recent trends in artificial intelligence (AI) and deep learning (DL) this project proposes an efficient and scalable approach to address this problem. By applying computer vision technologies to street view imagery and utilizing image analysis techniques, a system can be developed and implemented to identify the factors affecting residents’ sense of security easily. The information provided by the system could assist both experts and local governments in their decision-making processes. In this thesis, an approach different from the commonly used image segmentation techniques is proposed. Two object detection models were custom-trained to detect specific elements that might directly interfere with human safety, such as vehicles, traffic signs, or trees. A You Only Look Once (YOLO) model, well known for its low inference time and high accuracy in terms of object detection, was used as a base. The results, obtained by analyzing street view images of different zones within the city of Stockholm, demonstrate that using these fine-tuned models, achieving mean average precision (mAP) scores of 53.63% and 51.26% respectively, can significantly reduce the time spent by local authorities in observing the streets.

Abstract [sv]

Stadsmiljön är utformad för att säkerställa bästa möjliga livskvalitet för stadens invånare, vilket gör säkerhetsuppfattningar avgörande i stadsplanering och politiska beslut. Att studera dessa faktorer kan dock vara mödosamt och tidskrävande. Detta projekt utnyttjar artificiell intelligens (AI) och djupinlärning (DL) för att föreslå en effektiv metod genom att använda datorseende på gatubilder. Det utvecklade systemet kan snabbt identifiera faktorer som påverkar invånarnas känsla av trygghet och hjälpa experter och lokala myndigheter i beslutsfattandet. Specialtränade objektigenkänningsmodeller, baserade på You Only Look Once (YOLO), användes för att upptäcka element som fordon, trafikskyltar och träd. Analysen av Stockholms gatubilder visar att dessa modeller avsevärt kan minska den tid myndigheterna spenderar på att övervaka gatorna samtidigt som modellerna bibehåller hög noggrannhet.

Place, publisher, year, edition, pages
2024. , p. 63
Series
TRITA-EECS-EX ; 2024:573
Keywords [en]
Deep Learning, Object Detection, Street View, Urban Planning, Safety Perceptions
Keywords [sv]
Djupinlärning, Objektdetektering, Street View, Stadsplanering, Säkerhetsuppfattningar
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-359695OAI: oai:DiVA.org:kth-359695DiVA, id: diva2:1935829
Supervisors
Examiners
Available from: 2025-02-10 Created: 2025-02-07 Last updated: 2025-02-10Bibliographically approved

Open Access in DiVA

fulltext(34005 kB)55 downloads
File information
File name FULLTEXT02.pdfFile size 34005 kBChecksum SHA-512
4a36e0f63f44ce3acd1628f2e69093b64f1fbcc9f071839356307eaa124f3fe3a5b60c6ae75440309a76b0687d2ab558b5b2c9877c68541045e6020178e3978e
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 55 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 900 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf