Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Today’s society is highly dependent on plastic materials having essentialqualities such as formability, but they have severe drawbacks like limitedrecyclability. Thus, it is highly desirable to find alternatives to these materials,especially for single-use applications as in the packaging industry. In recentyears, biopolymers such as cellulose have been of significant interest asalternatives for plastic.However, biopolymers are challenging as they are extracted from nature aspolymers with predefined length and chemical structure that are difficult tomodify. To improve moldability among other properties, biopolymers needmulti-step modifications, often requiring large quantities of chemicals and lossof desired inherent properties.Here, ultrasonication is used to increase the sorption of plasticizers, e.g., glycerolor urea, onto cellulose to increase the ductility of the materials. The ductilityincreases from 10% achieved for only sonicated materials to 40% for materialssonicated with glycerol. This is due to glycerol on the fiber’s surface whichreduces the capacity of forming strong fiber joints and causes slippage. This isevidenced by the stress-strain curves of the glycerol-plasticized materials, whichexhibit a region of plastic deformation not usually seen in paper-like materials.Furthermore, the effects of glycerol on fiber wall levels are observed throughboth scattering experiments and DMA. The scattering shows that the fiber in awater-free glycerol swollen state retains a state typical for water-swollen fibers.The trend is proportional to the glycerol content. The DMA shows a thermaltransition for the fiber wall level related to glycerol content. This thesisdemonstrates that ultrasonication of pulp in the presence of plasticizer impartsductility to the corresponding material which may hold promise for the future.The concept is reliant on the combinations of ultrasonication, plasticizer and theunique fines formed during ultrasonication.
Abstract [sv]
Dagens samhälle är starkt beroende av plastmaterial som har flertaletgynnsamma egenskaper såsom formbarhet, men de har också en rad nackdelar,såsom begränsad återvinningsbarhet. Det är därför önskvärt att hitta alternativtill dessa material, särskilt för engångsbruk inom förpackningsindustrin.De senaste åren har biopolymerer, som cellulosa, haft ett växande intresse somalternativ till plast. Dock har biopolymerer sina nackdelar, då de utvinns frånnaturen med förbestämd polymerisationsgrad och kemisk struktur. För attförbättra formbarheten, samt andra egenskaper, krävs flera modifieringssteg,vilket ofta innebär stora mängder kemikalier och en förlust av vissa ursprungligaegenskaper.I detta arbete används ultraljudsbehandling för att öka absorptionen avmjukgörare, främst glycerol, på cellulosa för att öka materialens duktilitet.Duktiliteten ökar från 10% för enbart ultraljudsbehandlade material till 40% förmaterial som ultraljudsbehandlats i närvaro av glycerol. Detta beror dels inärvaro av glycerolen på fibrernas yta, vilket minskar förmågan att skapa starkafiberbindningar och leder till glidplan. Detta bevisas av spänningstöjningskurvornaför de glycerol-plastiserade materialen, som uppvisar ettområde av plastisk deformation som normalt inte ses hos pappersliknandematerial. Dels observeras effekterna av glycerol på fiberväggsnivå genom bådespridningsexperiment och DMA. Spridningen visar att fibrerna i ett vattenfritt,glycerolsvullet tillstånd behåller ett tillstånd som är typiskt för vatten-svullnafibrer. Trenden är proportionell mot glycerolinnehållet. DMA visar en termiskövergång på fiberväggsnivå relaterad till glycerolinnehållet.Denna avhandling visar att ultraljudsbehandling av pappersmassa i närvaro avmjukgörare ger duktilitet till det resulterande materialet, vilket kan vara lovandeför framtiden. Konceptet bygger på kombinationen av ultraljudsbehandling,mjukgörare och de unika finmaterial som bildas under ultraljudsbehandlingen.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 107
Series
TRITA-CBH-FOU ; 2025:2
Keywords
Cellulose, Glycerol, Thermoformability, Thermoplastic, Thermoprocessability, Ultrasonication, Cellulosa, Glycerol, Termisk processerbarhet, Termoformbarhet, Termoplast, Ultrasonikering
National Category
Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-360053 (URN)978-91-8106-194-9 (ISBN)
Public defence
2025-03-14, Kollegiesalen, Brinellvägen 6, https://kth-se.zoom.us/j/67603017310, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20250218
2025-02-182025-02-172025-03-12Bibliographically approved