kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low thermal expansion in conjunction with improved mechanical properties achieved in Mg-Gd solid solutions
National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing 400044, China.
National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing 400044, China.
National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing 400044, China.
National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing 400044, China.
Show others and affiliations
2025 (English)In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 251, article id 113685Article in journal (Refereed) Published
Abstract [en]

Addition of Gd with relatively large solubility is demonstrated to significantly reduce the coefficient of thermal expansion (CTE), while improving obviously the mechanical properties of Mg matrix. A good combination of low CTE, high strength and ductility is obtained at Gd content of ∼ 10.6 wt%. According to first-principle predictions for Mg-Gd solid solutions, the decreased CTE upon alloying with Gd is predominately determined by the reduction of lattice vibrational contribution. This reduction emerges basically from the weakened anharmonic effect, which is represented by the decreased Grüneisen parameter. The refined grain size and solution of Gd in bulk matrix predominate the increased strength of Mg-Gd alloys. The segregation of Gd at grain boundary is found to yield important impact on the refined grain size. Furthermore, while the obvious reduction of ductility at relatively high Gd contents is related to the precipitation of coarse Mg5Gd phase, the high ductility achieved at relatively low Gd contents is closely correlated with the activation of non-basal slips. It emerges fundamentally from the varied influence of Gd on the unstable stacking fault energy of basal and non-basal slips. The present advances enhance the understanding of designing innovative Mg alloys with tunable thermal expansion and mechanical properties.

Place, publisher, year, edition, pages
Elsevier BV , 2025. Vol. 251, article id 113685
Keywords [en]
First-principle calculations, Mechanical properties, Mg alloys, Solid solution, Thermal expansion
National Category
Metallurgy and Metallic Materials Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-359892DOI: 10.1016/j.matdes.2025.113685ISI: 001423629200001Scopus ID: 2-s2.0-85216895677OAI: oai:DiVA.org:kth-359892DiVA, id: diva2:1937202
Note

QC 20250303

Available from: 2025-02-12 Created: 2025-02-12 Last updated: 2025-03-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Vitos, Levente

Search in DiVA

By author/editor
Vitos, Levente
By organisation
Properties
In the same journal
Materials & design
Metallurgy and Metallic MaterialsCondensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf