Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The rapid evolution of electrification across industries demands electric machines that combine high efficiency, adaptability, and a large operating range. Traditional induction machine (IM), constrained by fixed winding configurations and static operating characteristics, struggle to meet these dynamic requirements over the wider operational range demanded by the application. This thesis addresses these limitations by pioneering dynamic pole reconfiguration of multiphase IMs, leveraging control frameworks and modeling techniques to unlock flexibility and performance.
Central to this thesis is the vector space decomposition (VSD) mathematical framework, which decomposes the electrical variables of machines into orthogonal vector spaces, allowing for the separation of space harmonics. These independent vector spaces enable the dynamic control of magnetic pole pairs through magnetic pole pair transition (MPT) theory. This capability allows a single machine to emulate a ”virtual gearbox,” transforming its torque-speed profile from one pole pair configuration to another in real-time without requiring physical winding reconfiguration. For instance, a 9-phase multiphase IM can transition from a 1-pole pair configuration for high-speed operation to a 3-pole pair configuration for high-torque demands, expanding the torque-speed operational range to suit diverse applications.
A critical contribution of this work is its robust approach to parameter identification. Traditional methods rely on time-consuming finite element analysis (FEA) and static laboratory tests. The thesis introduces a methodology for translating equivalent circuit parameters of the multiphase IM in a known pole pair winding configuration to any target pole pair winding configuration. Additionally, the research addresses practical challenges such as converter non-linearities, proposing converter parameter identification and compensation algorithm that reduces voltage drop errors, ensuring reliable control under practical operating conditions.
One of the cornerstones of this thesis is generalized harmonic injection (GHI), a groundbreaking control strategy developed in this work. GHI optimizes torque density by strategically injecting harmonic currents into multiple subspaces while synchronizing their stator frequencies to mitigate the adverse effects of inter-plane cross-coupling (IPXC), which otherwise could cause beat-frequency oscillations resulting in large torque ripple. This enables the possibility of loss reduction by minimizing the stator current for any given operating point of the multiphase IM. Furthermore, smooth reference frame transition (SRFT) extends the GHI to achieve ripple-free pole pair transition (RFPT). The synchronization strategy proposed in this thesis suppresses these beat-frequency oscillations and torque ripples, thereby improving the performance of the multiphase IM during pole pair transitions. Experimental validation on a 9-phase test bench demonstrated the efficacy of GHI, and results show a significant reduction in measured torque ripples.
The findings of this research have far-reaching effects in various industries. In electric mobility, RFPT enables vehicles to seamlessly switch between high torque urban driving and high-efficiency highway cruising, thereby improving the vehicle’s energy efficiency. Renewable energy systems, such as wind turbines, leverage adaptive pole pair numbers to optimize power generation across fluctuating wind speeds. As industries worldwide transition to greener technologies, the methodologies and insights presented here can serve as a cornerstone for the electric machines of tomorrow.
Abstract [sv]
Den snabba utvecklingen av elektrifiering inom olika industrier kräver elektriska maskiner som kombinerar hög effektivitet, anpassningsförmåga och ett stort driftområde. Traditionella (IM), begränsade av fasta lindningskonfigurationer och statiska driftkarakteristiker, har svårt att möta dessa dynamiska krav över det bredare driftområde som applikationen kräver. Denna avhandling tar itu med dessa begränsningar genom att introducera dynamic pole reconfiguration i multiphase induction machine (IM), och utnyttjar styrningsramverk och modelleringsmetoder för att frigöra flexibilitet och prestanda.
Centralt i denna avhandling är den matematiska vector space decomposition (VSD), som delar upp maskiners elektriska variabler i ortogonala vektorrum, vilket möjliggör separering av rymdharmoniska komponenter. Dessa oberoende vektorrum möjliggör dynamisk kontroll av magnetiska polpar genom teorin om magnetic pole pair transition (MPT). Denna kapabilitet gör att en enda maskin kan fungera som en ”virtuell växellåda och omvandla sitt moment-hastighetsförhållande från en polparskonfiguration till en annan i realtid utan att kräva fysisk lindningsomkonfiguration. Till exempel kan en nio-fasig flerfasig IM växla från en enpolsparskonfiguration för hög hastighet till en trepolsparskonfiguration för hög momentkrav, vilket utökar moment-hastighetsområdet för att passa olika applikationer.
En kritisk insats i detta arbete är dess robusta metod för parameteridentifiering. Traditionella metoder är beroende av tidskrävande finite element analysis (FEA) och statiska laboratorietester. Avhandlingen introducerar en metodologi för att övers ätta ekvivalenta kretsparametrar hos den multiphase IM i en känd polparslindningskonfiguration till en målad polparskonfiguration. Dessutom tar forskningen itu med praktiska utmaningar såsom omvandlarnonlineariteter, och föreslår en identifieringsoch kompensationsalgoritm för omvandlarparametrar som minskar spänningsfallfel, vilket s äkerställer tillförlitlig kontroll under praktiska driftförhållanden.
En av hörnstenarna i denna avhandling är generalized harmonic injection (GHI), en banbrytande styrningsstrategi utvecklad inom detta arbete. GHI optimerar momenttäthet genom att strategiskt injicera harmoniska strömmar i flera delrum samtidigt som deras statorfrekvenser synkroniseras för att mildra de negativa effekterna av inter-plane cross-coupling (IPXC), vilket annars skulle kunna orsaka svängningar med slagfrekvens och därigenom stora momentvariationer. Detta möjliggör även förlustreducering genom att minimera statorströmmen vid varje givet driftläge för den multiphase IM. Dessutom utvidgar smooth reference frame transition (SRFT) GHI för att uppnå ripple-free pole pair transition (RFPT). Synkroniseringsstrategin som föreslås i denna avhandling undertrycker dessa slagfrekvenssvängningar och momentvariationer, vilket förbättrar prestandan hos den multiphase IM under polparstransition. Experimentell validering på en nio-fasig testbänk visade effekten av GHI, och resultaten visar en betydande minskning av uppmätta momentvariationer.
Resultaten av denna forskning har långtgående effekter inom olika industrier. Inom elektrisk mobilitet möjliggör RFPT att fordon sömlöst kan växla mellan högt moment för stadskörning och hög effektivitet för motorvägskörning, vilket förbättrar fordonets energieffektivitet. Förnybara energisystem, såsom vindkraftverk, utnyttjar anpassningsbara polparsnivåer för att optimera elproduktionen över varierande vindhastigheter. När industrier över hela världen övergår till grönare teknologier kan de metoder och insikter som presenteras här utgöra en grundsten för framtidens elektriska maskiner.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. vi, 99
Series
TRITA-EECS-AVL ; 2025:65
Keywords
Multiphase induction machines, vector space decomposition, parameter identification methods, magnetic pole-pair transition, generic harmonic injection strategy, Multiphase induktionsmaskiner, vector space decomposition, metoder för parameteridentifiering, magnetisk polparstransition, generalized harmonic injection
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-363279 (URN)978-91-8106-308-0 (ISBN)
Public defence
2025-06-10, F3, Lindstedtsvägen 26,, 114 28 Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research
Note
QC 20250513
2025-05-132025-05-102025-05-15Bibliographically approved