kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Data-driven Image Reconstruction in Computed Tomography
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0002-6648-2378
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses mainly on improving the quality of reconstruction in computed tomography (CT), which is an imaging techniquethat aims to reconstruct the interior of an object from a set of X-ray projections obtained from different viewpoints. Mathematically, this is an inverse problem that is often ill-posed and, therefore, requires some sort of regularization. Recently, this research field has been dominated by data-driven approaches, and this thesis is not an exception. In contrast to model-based methods that assume that a reconstructed object possesses certain predefined properties, data-driven methods use the statistical information obtained from a set of similar objects to improve reconstruction of a new object from the same class. The recent development of computer hardware has allowed us to extract and store this statistical information from a large set of samples, and thereforeis responsible for the increased popularity of these methods. However, the problem with these approaches is that the most efficient of them, such as deep neural networks, lack interpretability, and their extraordinary empirical performance is not fully justified from the theoretical perspective. Another big challenge concerning CT in particular is to move from methods that perform very well on toy experiments conducted on simulated low-dimensional data to methods that could be used in real-life applications, such as medical imaging.

This thesis explores several directions that could potentially address the above issues. The first is data-driven optimization that can be used to reduce the number of iterations needed to obtain the final reconstruction when it is defined as a solution to an optimization problem. Such optimization problems appear within a classic regularization framework.

Next, we revisit dictionary learning, which can be seen as a predecessor to data-driven methods that go under the caption “deep learn-ing”. The advantage of dictionary learning is in its relative mathematical simplicity and interpretability. We see this as a bridge between well-understood but somewhat limited model-based approaches and a black-box paradigm of deep learning. Since reconstruction using learned dictionaries is defined as an optimization problem, data-driven optimization comes in useful here as well.

Finally, this thesis addresses the problem of upscaling state-of-the-art deep learning architectures so that they can be applied to clinical CT data. We show that certain modifications in the architecture combined with engineering techniques allow us to do that without relyingon super-computing resources.

Abstract [sv]

Avhandlingen fokuserar huvudsakligen på att förbättra rekonstruktionskvaliteten inom datortomografi (DT), vilket är en  avbildningsteknik som syftar till att avbilda insidan av ett objekt från en uppsättning genomlysningsbilder som fås genom att belysa objektet med röntgen från olika riktningar. Matematiskt sett svarar detta mot ett illaställt inversproblem. För att hantera illaställdheten krävs regularisering. På senare tid har detta forskningsområde dominerats av data-drivna metoder, och denna avhandling är inget undantag. Till skillnad från modellbaserade metoder, som antar att objektet som avbildas har vissa fördefinierade egenskaper, bygger data-drivna metoder på statistisk information erhållen från en uppsättning liknande objekt för att förbättra rekonstruktionen av ett nytt objekt från samma klass. Den senaste utvecklingen inom datorhårdvara har gjort det möjligt att extrahera och lagra sådan statistisk information från stora mängder data och är därmed en av anledningarna till dessa metoders ökade popularitet. Problemet med dessa metoder är dock att de mest effektiva, såsom djupa neurala nätverk, saknar tolkbarhet, och deras extraordinära empiriska prestanda är inte fullt ut motiverad ur ett teoretiskt perspektiv. En annan stor utmaning, särskilt inom DT, är att övergå från metoder som fungerar mycket bra i teoretiska experiment med simulerade lågdimensionella data, till metoder som kan användas i praktiska tillämpningar, såsom medicinsk bilddiagnostik.

Avhandlingen utforskar flera riktningar som potentiellt kan adressera ovanstående problem. Den första är data-drivna optimeringsmetoder som kan användas för att minska antalet iterationer som behövs för att uppnå en slutgiltig rekonstruktion, när denna definieras som en lösning till ett optimeringsproblem. Sådana optimeringsproblem förekommer inom klassiska regulariseringsramverk.

Nästa område som undersöks är ordbokslärande (dictionary learning), vilket kan ses som en föregångare till data-drivna metoder under rubriken ``djupinlärning''. Fördelen med ordbokslärande ligger i dess relativa matematiska enkelhet och tolkbarhet. Detta ses som en brygga mellan välförstådda men något begränsade modellbaserade metoder och den ``svart låda''-paradigm som djupinlärning representerar. Eftersom rekonstruktion med hjälp av inlärda ordböcker definieras som ett optimeringsproblem, blir data-drivna optimeringsmetoder också användbara här.

Slutligen adresserar avhandlingen problemet med att skala upp moderna djupinlärningsarkitekturer så att de kan tillämpas på kliniska DT-data. Vi visar att vissa modifieringar i arkitekturen, kombinerat med ingenjörstekniker, möjliggör detta utan att behöva förlita sig på superdatorresurser.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025.
Series
TRITA-SCI-FOU ; 2025:11
National Category
Medical Imaging
Research subject
Applied and Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-360160ISBN: 978-91-8106-218-2 (print)OAI: oai:DiVA.org:kth-360160DiVA, id: diva2:1938808
Public defence
2025-03-17, Lecture Hall F3, Lindstedtsvägen 22, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, AM13-0049Vinnova, 2015-06759
Note

QC 2025-02-19

Available from: 2025-02-19 Created: 2025-02-19 Last updated: 2025-02-25Bibliographically approved
List of papers
1. Accelerated Forward-Backward Optimization Using Deep Learning
Open this publication in new window or tab >>Accelerated Forward-Backward Optimization Using Deep Learning
2024 (English)In: SIAM Journal on Optimization, ISSN 1052-6234, E-ISSN 1095-7189, Vol. 34, no 2, p. 1236-1263Article in journal (Refereed) Published
Abstract [en]

We propose several deep -learning accelerated optimization solvers with convergence guarantees. We use ideas from the analysis of accelerated forward -backward schemes like FISTA, but instead of the classical approach of proving convergence for a choice of parameters, such as a step -size, we show convergence whenever the update is chosen in a specific set. Rather than picking a point in this set using some predefined method, we train a deep neural network to pick the best update within a given space. Finally, we show that the method is applicable to several cases of smooth and nonsmooth optimization and show superior results to established accelerated solvers.

Place, publisher, year, edition, pages
Society for Industrial & Applied Mathematics (SIAM), 2024
Keywords
convex optimization, deep learning, proximal-gradient algorithm, inverse problems
National Category
Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-345940 (URN)10.1137/22M1532548 (DOI)001196808600001 ()2-s2.0-85190534496 (Scopus ID)
Note

QC 20240426

Available from: 2024-04-26 Created: 2024-04-26 Last updated: 2025-02-19Bibliographically approved
2. Deep Learning-Based Dictionary Learning and Tomographic Image Reconstruction
Open this publication in new window or tab >>Deep Learning-Based Dictionary Learning and Tomographic Image Reconstruction
2022 (English)In: SIAM Journal on Imaging Sciences, E-ISSN 1936-4954, Vol. 15, no 4, p. 1729-1764Article in journal (Refereed) Published
Abstract [en]

This work presents an approach for image reconstruction in clinical low-dose tomography that combines principles from sparse signal processing with ideas from deep learning. First, we describe sparse signal representation in terms of dictionaries from a statistical perspective and interpret dictionary learning as a process of aligning the distribution that arises from a generative model with the empirical distribution of true signals. As a result, we can see that sparse coding with learned dictionaries resembles a specific variational autoencoder, where the encoder is a sparse coding algorithm and the decoder is a linear function. Next, we show that dictionary learning can also benefit from computational advancements introduced in the context of deep learning, such as parallelism and stochastic optimization. Finally, we show that regularization by dictionaries achieves competitive performance in computed tomography reconstruction compared to state-of-the-art model-based and data-driven approaches, while being unsupervised with respect to tomographic data.

Place, publisher, year, edition, pages
Society for Industrial & Applied Mathematics (SIAM), 2022
Keywords
dictionary learning, generative model, deep learning, image reconstruction, computed tomography
National Category
Signal Processing
Identifiers
urn:nbn:se:kth:diva-323412 (URN)10.1137/21M1445697 (DOI)000903981200005 ()2-s2.0-85165753992 (Scopus ID)
Note

QC 20230201

Available from: 2023-02-01 Created: 2023-02-01 Last updated: 2025-02-19Bibliographically approved
3. Invertible Learned Primal-Dual
Open this publication in new window or tab >>Invertible Learned Primal-Dual
Show others...
2021 (English)Conference paper, Published paper (Refereed)
Keywords
iterative reconstruction, invertible neural networks, deep learning, inverse problems, computed tomography
National Category
Signal Processing
Research subject
Applied and Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-360159 (URN)
Conference
NeurIPS 2021 Workshop on Deep Learning and Inverse Problems, online
Funder
Vinnova, 2015-06759Swedish Foundation for Strategic Research, AM13-0049
Note

QC 20250219

Available from: 2025-02-19 Created: 2025-02-19 Last updated: 2025-02-19Bibliographically approved
4. 3D Helical CT Reconstruction With a Memory Efficient Learned Primal-Dual Architecture
Open this publication in new window or tab >>3D Helical CT Reconstruction With a Memory Efficient Learned Primal-Dual Architecture
2024 (English)In: IEEE Transactions on Computational Imaging, ISSN 2573-0436, E-ISSN 2333-9403, Vol. 10, p. 1414-1424Article in journal (Refereed) Published
Abstract [en]

Deep learning based computed tomography (CT) reconstruction has demonstrated outstanding performance on simulated 2D low-dose CT data. This applies in particular to domain adapted neural networks, which incorporate a handcrafted physics model for CT imaging. Empirical evidence shows that employing such architectures reduces the demand for training data and improves upon generalization. However, their training requires large computational resources that quickly become prohibitive in 3D helical CT, which is the most common acquisition geometry used for medical imaging. This paper modifies a domain adapted neural network architecture, the Learned Primal-Dual (LPD), so that it can be trained and applied to reconstruction in this setting. The main challenge is to reduce the GPU memory requirements during the training, while keeping the computational time within practical limits. Furthermore, clinical data also comes with other challenges not accounted for in simulations, like errors in flux measurement, resolution mismatch and, most importantly, the absence of the real ground truth. To the best of our knowledge, this work is the first to apply an unrolled deep learning architecture for reconstruction on full-sized clinical data, like those in the Low dose CT image and projection data set (LDCT).

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
Computed tomography, Image reconstruction, Computer architecture, Training, Three-dimensional displays, Neural networks, Reconstruction algorithms, deep learning, helical acquisition, primal-dual, clinical data
National Category
Computer graphics and computer vision
Identifiers
urn:nbn:se:kth:diva-355183 (URN)10.1109/TCI.2024.3463485 (DOI)001327401000001 ()2-s2.0-85204642534 (Scopus ID)
Note

QC 20241024

Available from: 2024-10-24 Created: 2024-10-24 Last updated: 2025-02-19Bibliographically approved

Open Access in DiVA

fulltext(28207 kB)1723 downloads
File information
File name FULLTEXT01.pdfFile size 28207 kBChecksum SHA-512
34a3a3fd9a768c46dc73d8e094a71fde5f708b4ac062aa49ddb84503de65ea97d4693c6b1bbc8b18a60acbb3d6ebb94954396845b8a144d4ab131186cb073b49
Type fulltextMimetype application/pdf

Authority records

Rudzusika, Jevgenija

Search in DiVA

By author/editor
Rudzusika, Jevgenija
By organisation
Mathematics (Dept.)
Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar
Total: 1723 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 605 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf