kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Catalyst Development and Distributed Electrified Heating in Reforming Processes for Efficient Renewable Syngas and Fuel Production
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Process.ORCID iD: 0000-0003-0583-9721
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Sustainable development
SDG 7: Affordable and clean energy, SDG 9: Industry, innovation and infrastructure, SDG 12: Responsible consumption and production, SDG 13: Climate action
Abstract [en]

Efforts to mitigate climate change primarily focus on reducing globalgreenhouse gas emissions, particularly carbon dioxide (CO2). Without intervention,global warming could lead to a 3.2C temperature increase, resultingin an 18 % global GDP loss. Achieving the Paris Agreement’s goal oflimiting temperature rise to 1.5C (which if surpassed could lead to extreme climate change) requires significant cuts in GHG emissions, as outlined by theIPCC’s recommendation to decrease CO2 emissions by 45 % from 2010 levels by 2030, reaching net-zero by 2050. Biomass, with its potential for carbon neutrality or negativity, is a vital renewable feedstock, convertible into greenfuels via thermochemical processes like gasification, pyrolysis, and anaerobic digestion. However, these processes face challenges, such as catalyst deactivationand high energy demands. Additive manufacturing and electrification are emerging solutions, offering enhanced catalyst stability and increased energy efficiency by reducing reliance on fuel combustion. This doctoral thesis focuses on an extensive overview of the state-of-theart of renewable feedstocks with a focus on its challenges and perspective, as well as investigative work based on these findings. The latter opened the pathfor the design, fabrication, electrification and testing of such 3D-printed catalysisin the catalytic reforming of renewable feedstocks. The experimental workwas aided by CFD simulations, and proofs-of-concept were developed using process simulation software and techno-economic analysis. The experimental results show a successful demonstration of the electrified catalytic reforming technology of biomass pyrolysis volatiles for syngas production, resulting incomplete bio-oil reforming to syngas, with a highest yield of 0.071 g H2 g−1 biomass with excellent catalyst stability and energy efficiency of 66 %. The CFD results show how the lattice structure of the 3D-printed catalyst resultsin a higher surface area and improved transport phenomena, which resultin enhanced mass and heat transfer properties. Furthermore, this novel 3D printed catalyst was tested for catalytic dry reforming of synthetic biogas using induction as heat source, resulting in complete reforming to syngas with minimal coke deposition, compared to commercially available catalysts, highlighting the effect of the catalyst’s geometry on its stability. Based on the electrified catalytic reforming technology, process designand development at an industrial scale were investigated to achieve integration with product upgrading (such as synthetic natural gas, i.e. SNG, and H2 production). The developed processes were compared with non-electrified reforming technologies using mass and energy balances, as well as using techno-economic analyses, sensitivity analyses, and CO2-equivalent analyses. Regarding SNG production, the results show a production cost of 18 SEK kg−1 SNG, toward a selling price of 27 SEK kg−1 SNG, resulting in an economic profit: capital investment recovery (break-even point) within two years of operation and a net cash flow of 5,000 MSEK after 20 years. In terms of process parameters the results show susceptibility to high steam-to-biomassratios and the market price of both biomass and biochar. Regarding H2 production,electrified catalytic reforming technology results in 93 % reduction of the CO2-equivalents compared to industrial natural gas reforming.

Abstract [sv]

Insatser för att mildra klimatförändringarna fokuserar främst på att minska

de globala utsläppen av växthusgaser, särskilt koldioxid (CO2). Utan ingri-

pande åtgärder kan den globala uppvärmningen leda till en temperaturökning

på 3,2 C, vilket kan resultera i en global BNP-förlust på 18 %. För att uppnå

Parisavtalets mål att begränsa temperaturökningen till 1,5 C krävs betydande

minskningar av utsläppen av växthusgaser, vilket beskrivs i IPCC:s rekommen-

dation att minska CO2-utsläppen med 45 % från 2010 års nivåer till 2030 års

nivåer senast i 2050. Biomassa, med sin potential för kol- neutralitet eller nega-

tivitet, är ett viktigt förnybart råmaterial som kan omvandlas till gröna bränslen

via termokemiska processer som förgasning, pyrolys och anaerob rötning. Dessa

processer står dock inför utmaningar, såsom katalysatordeaktivering och höga

energibehov. Friformsframställning och elektrifiering är nya lösningar som er-

bjuder förbättrad katalysatorstabilitet och ökad energieffektivitet genom att

minska beroendet av fossil bränsleförbränning.

Denna doktorsavhandling fokuserar på en omfattande litteraturstudie av

det senaste inom förnybar energi med fokus på dess utmaningar och perspektiv,

samt utredningsarbete baserat på denna studie. Det senare möjliggjorde design,

tillverkning, elektrifiering och testning av en innovativ 3D-printad katalysator i

den katalytiska reformeringen av förnybara energikällor. Som komplement till

det experimentella arbetet användes CFD-simuleringar, och koncepttest utveck-

lades med hjälp av processimuleringsmjukvara och teknisk-ekonomisk analys.

De experimentella resultaten visade en framgångsrik demonstration av den elek-

trifierade katalytiska reformeringen av biomassapyrolysånga för syngasproduk-

tion. Dessa resulterade i fullständig biooljereformering, med ett högsta utbyte

på 0,071 g H2 g−1 biomassa med utmärkt katalysatorstabilitet och energief-

fektivitet på 66 %. CFD-resultaten visade hur gitterstrukturen hos den 3D-

printade katalysatorn resulterar i en högre ytarea och förbättrade transportpro-

cesser, vilket resulterar i förbättrade massa- och värmeöverföringsegenskaper.

Dessutom testades denna 3D-printade katalysator för katalytisk torreformering

av syntetisk biogas med induktion som värmekälla. Det resulterade i fullständig

reformering till syngas med minimal koksavsättning, jämfört med kommersiellt

tillgängliga katalysatorer, vilket framhäver vilken effekt katalysatorns geometri

har på dess stabilitet.

Baserat på den elektrifierade katalytiska reformeringstekniken undersöktes

process- och designutveckling i industriell skala för att kunna integrera med pro-

duktuppgradering, såsom produktion av syntetisk naturgas (SNG) och vätgas.

De utvecklade processerna jämfördes med icke-elektrifierade reformeringstekniker

med hjälp av massa- och energibalanser, samt teknoekonomiska analyser, känslighetsanalyser

och CO2-ekvivalenter. Gällande SNG-produktion visade resultaten en produk-

tionskostnad på 18 SEK kg−1 SNG, mot ett försäljningspris på 27 SEK kg−1

SNG, vilket resulterar i en ekonomisk vinst: återinvestering inom två års drift

och ett nettokassaflöde på 5.000 MSEK efter 20 år. Resultaten visade också

kännslighet för höga ånga-till-biomassa-förhållanden och marknadspriset för

både biomassa och biokol. Dessutom visade resultaten att vätgasproduktionen genom elektrifierad katalytisk reformeringsteknik resulterar i 93 % minskning av CO2-ekvivalenter jämfört med industriell naturgasreformering.

Place, publisher, year, edition, pages
Stockholm: Kungliga tekniska högskolan, 2025. , p. 123
Series
TRITA-ITM-AVL ; 2025:2
Keywords [en]
biomass, renewable fuels, hydrogen, syngas, reforming processes, additive manufacturing, electrification
National Category
Chemical Engineering
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-360504ISBN: 978-91-8106-173-4 (print)OAI: oai:DiVA.org:kth-360504DiVA, id: diva2:1940497
Public defence
2025-04-11, Sal F3 / https://kth-se.zoom.us/j/62098327132, Lindstedtsvägen 26-28, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2025-03-07 Created: 2025-02-26 Last updated: 2025-04-07Bibliographically approved
List of papers
1. Reforming processes for syngas production: A mini-review on the current status, challenges, and prospects for biomass conversion to fuels
Open this publication in new window or tab >>Reforming processes for syngas production: A mini-review on the current status, challenges, and prospects for biomass conversion to fuels
2022 (English)In: Applications in Energy and Combustion Science, ISSN 2666-352X, Vol. 10, p. 100064-, article id 100064Article in journal (Refereed) Published
Abstract [en]

Dedicated bioenergy combined with carbon capture and storage are important elements for the mitigation scenarios to limit the global temperature rise within 1.5 °C. Thus, the productions of carbon-negative fuels and chemicals from biomass is a key for accelerating global decarbonisation. The conversion of biomass into syngas has a crucial role in the biomass-based decarbonisation routes. Syngas is an intermediate product for a variety of chemical syntheses to produce hydrogen, methanol, dimethyl ether, jet fuels, alkenes, etc. The use of biomass-derived syngas has also been seen as promising for the productions of carbon-negative metal products. This paper reviews several possible technologies for the production of syngas from biomass, especially related to the technological options and challenges of reforming processes. The scope of the review includes partial oxidation (POX), autothermal reforming (ATR), catalytic partial oxidation (CPO), catalytic steam reforming (CSR) and membrane reforming (MR). Special attention is given to the progress of CSR for biomass-derived vapours as it has gained significant interest in recent years. Heat demand and efficiency together with properties of the reformer catalyst were reviewed more deeply, in order to understand and propose solutions to the problems that arise by the reforming of biomass-derived vapours and that need to be addressed in order to implement the technology on a big scale. 

Place, publisher, year, edition, pages
Elsevier BV, 2022
Keywords
Carbon capture, Carbon negative, Decarbonisation, Electrified reformer, Hydrogen production, Steam reforming
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-324378 (URN)10.1016/j.jaecs.2022.100064 (DOI)001036975900009 ()2-s2.0-85131191972 (Scopus ID)
Note

QC 20230227

Available from: 2023-02-27 Created: 2023-02-27 Last updated: 2025-02-26Bibliographically approved
2. Electrified catalytic steam reforming for renewable syngas production: Experimental demonstration, process development and techno-economic analysis
Open this publication in new window or tab >>Electrified catalytic steam reforming for renewable syngas production: Experimental demonstration, process development and techno-economic analysis
Show others...
2025 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 377, article id 124556Article in journal (Refereed) Published
Abstract [en]

Biomass is a key renewable feedstock for producing green fuels; however, renewable feedstock presents a high risk for catalyst deactivation and poor stability. In addition, the heat source of industrial reforming processes comes from fuel combustion and most heat is lost in the flue gas. In this study, a Ni/Al2O3/FeCrAl-based monolithic catalyst with a periodic open cellular structure (POCS) was designed and 3D-printed. A reforming process was then conducted by directly heating the catalyst using electricity instead of fuel combustion. This e-reformer technology was demonstrated in continuous catalytic steam reforming of biomass pyrolysis volatiles. A high H2 yield of ≈7.1 wt % of biomass has been obtained at a steam-to-biomass (S/B) ratio of 4.5, reforming temperature of 800 °C and weight hourly space velocity (WHSV) of 310 h−1, resulting in an energy consumption of 8 kWhel kg−1 biomass (66% energy efficiency). The results show a successful demonstration of the electrified technology with improvement potential; in addition, a process was designed and assessed economically for synthetic natural gas (SNG) production of 80 MWHHV, comparing electrification and partial oxidation in different scenarios.

Place, publisher, year, edition, pages
Elsevier BV, 2025
Keywords
3D-printed catalyst, Electrified reforming, Hydrogen, Pyrolysis, Pyrolysis volatiles, Steam reforming
National Category
Energy Engineering Chemical Engineering Energy Systems
Identifiers
urn:nbn:se:kth:diva-354281 (URN)10.1016/j.apenergy.2024.124556 (DOI)001327231800001 ()2-s2.0-85204774207 (Scopus ID)
Note

QC 20241023

Available from: 2024-10-02 Created: 2024-10-02 Last updated: 2025-02-26Bibliographically approved
3. Advanced application of a geometry-enhanced 3D-printed catalytic reformer for syngas production
Open this publication in new window or tab >>Advanced application of a geometry-enhanced 3D-printed catalytic reformer for syngas production
Show others...
2023 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 287, article id 117071Article in journal (Refereed) Published
Abstract [en]

Catalyst research on reforming processes for syngas production has mainly focused on the active metals and support materials, while the effect of the catalyst's geometry on the reforming reactions has been poorly studied. The application of 3D-printed materials with enhanced geometries has recently started to be studied in heterogeneous catalysis and is of interest to be implemented for reforming biomass and plastic waste to produce H2-rich syngas. In this study, a geometry-enhanced 3D-printed Ni/Al2O3/FeCrAl-based monolithic catalyst with a periodic open cellular structure (POCS) was designed and fabricated. The catalyst was used for batch steam reforming biomass pyrolysis volatiles for syngas production at different parameters (temperature and steam-to-carbon ratio). The results showed complete reforming of pyrolysis volatiles in all experimental cases, a high H2 yield of ≈ 7.6 wt% of biomass was obtained at the optimized steam-to-carbon ratio of 8 and a reforming temperature of 800 °C, which is a higher yield compared to other batch reforming tests reported in the literature. Moreover, CFD simulation results in COMSOL Multiphysics demonstrated that the POCS configuration improves the reforming of pyrolysis volatiles for tar/bio-oil reforming and H2 production thanks to enhanced mass and heat transfer properties compared to the regular monolithic single-channel configuration.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Additive manufacturing, Bioenergy, Hydrogen production, Process intensification, Steam reforming, Tar cracking
National Category
Energy Engineering Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-331686 (URN)10.1016/j.enconman.2023.117071 (DOI)2-s2.0-85153854885 (Scopus ID)
Note

QC 20230713

Available from: 2023-07-13 Created: 2023-07-13 Last updated: 2025-02-26Bibliographically approved
4. Distributed electrified heating for efficient hydrogen production
Open this publication in new window or tab >>Distributed electrified heating for efficient hydrogen production
Show others...
2024 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 15, no 1, article id 3868Article in journal (Refereed) Published
Abstract [en]

This study introduces a distributed electrified heating approach that is able to innovate chemical engineering involving endothermic reactions. It enables rapid and uniform heating of gaseous reactants, facilitating efficient conversion and high product selectivity at specific equilibrium. Demonstrated in catalyst-free CH4 pyrolysis, this approach achieves stable production of H2 (530 g h−1 L reactor−1) and carbon nanotube/fibers through 100% conversion of high-throughput CH4 at 1150 °C, surpassing the results obtained from many complex metal catalysts and high-temperature technologies. Additionally, in catalytic CH4 dry reforming, the distributed electrified heating using metallic monolith with unmodified Ni/MgO catalyst washcoat showcased excellent CH4 and CO2 conversion rates, and syngas production capacity. This innovative heating approach eliminates the need for elongated reactor tubes and external furnaces, promising an energy-concentrated and ultra-compact reactor design significantly smaller than traditional industrial systems, marking a significant advance towards more sustainable and efficient chemical engineering society.

Place, publisher, year, edition, pages
Nature Research, 2024
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-346497 (URN)10.1038/s41467-024-47534-8 (DOI)001216484200045 ()38719793 (PubMedID)2-s2.0-85192354703 (Scopus ID)
Note

QC 20240517

Available from: 2024-05-16 Created: 2024-05-16 Last updated: 2025-02-26Bibliographically approved
5. Catalytic dry reforming of methane using an induction reactor: experimental study of the effect of the catalyst’s structure
Open this publication in new window or tab >>Catalytic dry reforming of methane using an induction reactor: experimental study of the effect of the catalyst’s structure
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-360500 (URN)
Note

QC 20250226

Available from: 2025-02-26 Created: 2025-02-26 Last updated: 2025-02-26Bibliographically approved
6. Renewable syngas production from electrified catalytic steam reforming of biomass pyrolysis volatiles
Open this publication in new window or tab >>Renewable syngas production from electrified catalytic steam reforming of biomass pyrolysis volatiles
Show others...
2025 (English)In: Chemical Engineering Journal Advances, E-ISSN 2666-8211, Vol. 21, article id 100705Article in journal (Refereed) Published
Abstract [en]

Pyrolysis of biomass plus catalytic reforming of its pyrolysis volatiles is a green alternative to produce solid (biochar) and gaseous (syngas) fuels that have several valuable applications; however, this catalytic process suffers from fast deactivation, and its energy consumption is yet to be studied, factors that determine the process's feasibility in industrialisation. To address these issues, the direct electrification of a 3D-printed FeCrAl heater coated with 15.5 % Ni/Al2O3 was tested in a parametric study in the catalytic steam reforming of biomass pyrolysis volatiles, in order to investigate the effect of the S/B ratio and space–time on the syngas yield and composition. Complete bio-oil reforming was obtained at a biomass feed rate of ≤ 1 g min−1 and a S/B ratio of ≥ 2, and stability close to 100 % was estimated after over four hours of operation. Nonetheless, the produced syngas is rich in C1 – C3 gases and moderately low in H2 (≈ 2 wt %). The effect of the catalyst's structure on the bio-oil reforming and heat efficiency was complemented using CFD simulations and compared to a simple geometry based on commercial extruded monoliths. Finally, the biomass-derived syngas upgrading to H2 production was assessed using different process simulations and compared to existing H2-producing technologies in terms of energy efficiency and emissions.

Place, publisher, year, edition, pages
Elsevier BV, 2025
Keywords
3D-printed catalyst, Biomass, Electrified reforming, Syngas
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-358901 (URN)10.1016/j.ceja.2025.100705 (DOI)001398202700001 ()2-s2.0-85214564957 (Scopus ID)
Note

QC 20250127

Available from: 2025-01-23 Created: 2025-01-23 Last updated: 2025-02-26Bibliographically approved

Open Access in DiVA

Kappa utan bilagor(14021 kB)570 downloads
File information
File name FULLTEXT01.pdfFile size 14021 kBChecksum SHA-512
0ee3e64cf0cdb1628e50331a942628db32e31bf80d8f307d0ca611d672eb167641e3198e6efd6be51b5f9d82d469272a5564a9c3b4b60631745a8b9a1322a012
Type summaryMimetype application/pdf

Authority records

Bolívar Caballero, José Juan

Search in DiVA

By author/editor
Bolívar Caballero, José Juan
By organisation
Process
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1311 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf