kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
From Unprintable Peptidic Gel to Unstoppable: Transforming Diphenylalanine Peptide (Fmoc-FF) Nanowires and Cellulose Nanofibrils into a High-Performance Biobased Gel for 3D Printing
Univ Hamburg, Inst Wood Sci, D-22885 Barsbuttel, Germany..
Univ Hamburg, Inst Wood Sci, D-22885 Barsbuttel, Germany..
Univ Hamburg, Inst Wood Sci, D-22885 Barsbuttel, Germany..
Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
Show others and affiliations
2025 (English)In: ACS Applied Bio Materials, E-ISSN 2576-6422, Vol. 8, no 3, p. 2323-2339Article in journal (Refereed) Published
Abstract [en]

The growing interest in gel-based additive manufacturing, also known as three-dimensional (3D) gel-printing technology, for research underscores the crucial need to develop robust biobased materials with excellent printing quality and reproducibility. The main focus of this study is to prepare and characterize some composite gels obtained with a low-molecular-weight gelling (LMWG) peptide called Fmoc-diphenylalanine (Fmoc-FF) and two types of cellulose nanofibrils (CNFs). The so-called Fmoc-FF peptide has the ability to self-assemble into a nanowire shape and therefore create an organized network that induces the formation of a gel. Despite their ease of preparation and potential use in biological systems, unfortunately, those Fmoc-FF nanowire gel systems cannot be 3D printed due to the high stiffness of the gel. For this reason, this study focuses on composite materials made of cellulose nanofibrils and Fmoc-FF nanowires, with the main objective being that the composite gels will be suitable for 3D printing applications. Two types of cellulose nanofibrils are employed in this study: (1) unmodified pristine cellulose nanofibrils (uCNF) and (2) chemically modified cellulose nanofibrils, which ones have been grafted with polymers containing the Fmoc unit on their backbone (CNF-g-Fmoc). The obtained products were characterized through solid-state cross-polarization magic angle-spinning 1H NMR and confocal laser scanning microscopy. Within these two CNF structures, two composite gels were produced: uCNF/Fmoc-FF and CNF-g-Fmoc/Fmoc-FF. The mechanical properties and printability of the composites are assessed using rheology and challenging 3D object printing. With the addition of water, different properties of the gels were observed. In this instance, CNF-g-Fmoc/Fmoc-FF (c = 5.1%) was selected as the most suitable option within this product range. For the composite bearing uCNF, exceptional print quality and mechanical properties are achieved with the CNF/Fmoc-FF gel (c = 5.1%). The structures are characterized by using field emission scanning electron microscopy (FESEM) and small-angle X-ray scattering (SAXS) measurements.

Place, publisher, year, edition, pages
American Chemical Society (ACS) , 2025. Vol. 8, no 3, p. 2323-2339
Keywords [en]
cellulose nanofibrils (CNF), single electron transferliving radical polymerization (SET-LRP), 3D gel printing, direct ink writing (DIW), nanocellulose, Fmoc-FF
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-361559DOI: 10.1021/acsabm.4c01803ISI: 001440400900001PubMedID: 40051331OAI: oai:DiVA.org:kth-361559DiVA, id: diva2:1946899
Note

QC 20250324

Available from: 2025-03-24 Created: 2025-03-24 Last updated: 2025-03-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Roth, Stephan V.

Search in DiVA

By author/editor
Roth, Stephan V.
By organisation
Fiberprocesser
In the same journal
ACS Applied Bio Materials
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf