kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Silicon oxide nanofibers using fungi mycelium as template material/from water purification to space insulation
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.ORCID iD: 0000-0002-2073-7005
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. NKT HV Cables, Technology Consulting, SE-721 78 Västerås Sweden.ORCID iD: 0009-0005-3309-4255
Show others and affiliations
2024 (English)In: RSC Applied Interfaces, E-ISSN 2755-3701, Vol. 2, no 1, p. 210-219Article in journal (Refereed) Published
Abstract [en]

Mycelium derived from Ganoderma lucidum was employed as a template for synthesising silicon oxide (SiOx) nanofibers. The intricate structures of mycelial hyphae fibrils were replicated with high precision using an inexpensive commercial silane (3-aminopropyl)-triethoxysilane (APTES). Following the removal of the organic mycelium template phase at 600 °C, APTES was successfully converted to SiOx. The resulting SiOx fibres retained the morphology of the mycelium template, with a nearly identical fibre density to the original fibrous network. A fibril diameter reduction of approximately 43% was observed from 603 to 344 nm. All synthesised materials exhibited coherent structural integrity, sufficient for handling without breakage, although they were notably less mechanically flexible than the original mycelium template. The novel hybrid mycelium-3-aminopropyl-silsesquioxane fibre network and the thermally converted SiOx network displayed notable liquid absorption properties. These materials allowed for the preferential absorption of oil or water, depending on the presence of the amino group functionality. Remarkably, the SiOx network rapidly absorbed methylene blue-dyed water within 400 ms, demonstrating behaviour opposite to the virgin mycelium network. Additionally, the materials exhibited high thermal stability, withstanding flame exposure at approximately 1400 °C while maintaining their nano/micromorphology. This innovative approach of using “living” templates expands the range of morphologies that can be replicated in inorganic materials, enabling the creation of genetically and environmentally tuneable structures. The SiOx nanofibers produced through this method have potential applications in various fields, including water purification, biosensors, catalytic support, and insulation.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC) , 2024. Vol. 2, no 1, p. 210-219
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-361788DOI: 10.1039/d4lf00314dScopus ID: 2-s2.0-86000733448OAI: oai:DiVA.org:kth-361788DiVA, id: diva2:1948055
Note

QC 20250331

Available from: 2025-03-27 Created: 2025-03-27 Last updated: 2025-03-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Birdsong, Björn K.Capezza, Antonio JoseNejati, MaryamBjurström, AntonOlsson, Richard

Search in DiVA

By author/editor
Birdsong, Björn K.Capezza, Antonio JoseNejati, MaryamBjurström, AntonLi, YuanyuanJiménez Quero, AmparoOlsson, Richard
By organisation
Polymeric MaterialsGlycoscienceBiocomposites
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf