Optimizing Xenium In Situ data utility by quality assessment and best-practice analysis workflowsUppsala Univ, BioImage Informat Facil, Dept Informat Technol, Uppsala, Sweden; Uppsala Univ, BioImage Informat Facil, SciLifeLab, Uppsala, Sweden.
Helmholtz Munich, Computat Hlth Ctr, Inst Computat Biol, Munich, Germany; Univ Illinois, Dept Bioengn, Champaign, IL USA.
Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden.
Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden.
Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden.
Uppsala Univ, BioImage Informat Facil, Dept Informat Technol, Uppsala, Sweden; Uppsala Univ, BioImage Informat Facil, SciLifeLab, Uppsala, Sweden.
Uppsala Univ, Natl Bioinformat Infrastruct Sweden, Dept Med Biochem & Microbiol, SciLifeLab, Uppsala, Sweden.
Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden.
Helmholtz Munich, Computat Hlth Ctr, Inst Computat Biol, Munich, Germany.
Helmholtz Munich, Computat Hlth Ctr, Inst Computat Biol, Munich, Germany; Helmholtz Munich, Inst Lung Hlth & Immun, Munich, Germany; German Ctr Lung Res DZL, Munich, Germany.
Uppsala Univ, BioImage Informat Facil, Dept Informat Technol, Uppsala, Sweden; Uppsala Univ, BioImage Informat Facil, SciLifeLab, Uppsala, Sweden.
Charite Univ Med Berlin, Berlin Inst Hlth, Digital Hlth Ctr, Berlin, Germany.
Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden.
Show others and affiliations
2025 (English)In: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 22, no 4, p. 813-823Article in journal (Refereed) Epub ahead of print
Abstract [en]
The Xenium In Situ platform is a new spatial transcriptomics product commercialized by 10x Genomics, capable of mapping hundreds of genes in situ at subcellular resolution. Given the multitude of commercially available spatial transcriptomics technologies, recommendations in choice of platform and analysis guidelines are increasingly important. Herein, we explore 25 Xenium datasets generated from multiple tissues and species, comparing scalability, resolution, data quality, capacities and limitations with eight other spatially resolved transcriptomics technologies and commercial platforms. In addition, we benchmark the performance of multiple open-source computational tools, when applied to Xenium datasets, in tasks including preprocessing, cell segmentation, selection of spatially variable features and domain identification. This study serves as an independent analysis of the performance of Xenium, and provides best practices and recommendations for analysis of such datasets.
Place, publisher, year, edition, pages
Springer Nature , 2025. Vol. 22, no 4, p. 813-823
National Category
Bioinformatics and Computational Biology
Identifiers
URN: urn:nbn:se:kth:diva-361900DOI: 10.1038/s41592-025-02617-2ISI: 001444358900001PubMedID: 40082609Scopus ID: 2-s2.0-105000286295OAI: oai:DiVA.org:kth-361900DiVA, id: diva2:1949368
Note
QC 20250409
2025-04-022025-04-022025-04-09Bibliographically approved