kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimizing Xenium In Situ data utility by quality assessment and best-practice analysis workflows
Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden; Helmholtz Munich, Computat Hlth Ctr, Inst Computat Biol, Munich, Germany.
Helmholtz Munich, Computat Hlth Ctr, Inst Computat Biol, Munich, Germany; Helmholtz Zentrum Munchen, Inst Tissue Engn & Regenerat Med iTERM, Munich, Germany.
Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden.
Charite Univ Med Berlin, Berlin Inst Hlth, Digital Hlth Ctr, Berlin, Germany.
Show others and affiliations
2025 (English)In: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 22, no 4, p. 813-823Article in journal (Refereed) Epub ahead of print
Abstract [en]

The Xenium In Situ platform is a new spatial transcriptomics product commercialized by 10x Genomics, capable of mapping hundreds of genes in situ at subcellular resolution. Given the multitude of commercially available spatial transcriptomics technologies, recommendations in choice of platform and analysis guidelines are increasingly important. Herein, we explore 25 Xenium datasets generated from multiple tissues and species, comparing scalability, resolution, data quality, capacities and limitations with eight other spatially resolved transcriptomics technologies and commercial platforms. In addition, we benchmark the performance of multiple open-source computational tools, when applied to Xenium datasets, in tasks including preprocessing, cell segmentation, selection of spatially variable features and domain identification. This study serves as an independent analysis of the performance of Xenium, and provides best practices and recommendations for analysis of such datasets.

Place, publisher, year, edition, pages
Springer Nature , 2025. Vol. 22, no 4, p. 813-823
National Category
Bioinformatics and Computational Biology
Identifiers
URN: urn:nbn:se:kth:diva-361900DOI: 10.1038/s41592-025-02617-2ISI: 001444358900001PubMedID: 40082609Scopus ID: 2-s2.0-105000286295OAI: oai:DiVA.org:kth-361900DiVA, id: diva2:1949368
Note

QC 20250409

Available from: 2025-04-02 Created: 2025-04-02 Last updated: 2025-04-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Czarnewski, Paulo

Search in DiVA

By author/editor
Hu, TaoboCzarnewski, Paulo
By organisation
Gene TechnologyScience for Life Laboratory, SciLifeLab
In the same journal
Nature Methods
Bioinformatics and Computational Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf