kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Foundation Models Applied to Earth Observation
KTH, School of Electrical Engineering and Computer Science (EECS).
2025 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Foundation Models tillämpade på jordobservation (Swedish)
Abstract [en]

Satellite image analysis plays a crucial role in various fields, including environmental monitoring, disaster management, and urban planning. How- ever, training deep learning models for specific tasks such as land cover classification, semantic segmentation, and object detection typically requires substantial amounts of annotated data, which are costly and laborious to acquire in the remote sensing domain. Foundation models, pre-trained on massive datasets using self-supervised learning, offer a promising solution by learning general-purpose visual representations that can be efficiently adapted to diverse downstream tasks with reduced annotation requirements. This thesis evaluates the performance of vision foundation models in satellite imagery by comparing generalist models pre-trained on natural images (e.g., DINOv2) with domain-specific models specialized in satellite data (e.g., DOFA) and traditional task-specific architectures (e.g., ResNet, U-Net). The evaluation spans three key tasks: land classification, semantic segmentation, and object detection. For each task, performance was assessed using standard metrics such as accuracy and mean Intersection over Union (mIoU). The results show that generalist foundation models often match or surpass traditional models on RGB datasets, while domain-specific models excel on multispectral data thanks to specialized architectures. The findings highlights the potential of foundation models for satellite imagery analysis, while underscoring certain limitations, such as the detection of small objects and generalization across varied multispectral contexts. This work opens avenues for improving the adaptation of foundation models to the specific characteristics of satellite imagery, with potential applications in fields such as natural hazard management and environmental change detection.

Abstract [sv]

Satellitbilder används inom områden som miljöövervakning, katastrofhan- tering och stadsplanering. Traditionella modeller kräver ofta stora mängder märkta data och omfattande träning för varje specifik uppgift, vilket är resurskrävande. Denna studie undersöker användningen av grundmodeller (foundation models) för satellitbildsanalys. Grundmodeller är stora förtränade neurala nätverk som kan extrahera generella egenskaper från bilder och därmed anpassas till flera uppgifter med minimal finjustering. Studien visar att grundmodeller, trots att de är tränade på vanliga bilder, kan prestera i nivå med eller bättre än traditionella metoder vid klassificering, segmentering och objektdetektion. Särskilt specialiserade grundmodeller för fjärranalys visar goda resultat på multispektrala data. Resultaten visar att grundmodeller har stor potential att effektivisera satellitbildsanalys och konkurrera med traditionella, fullt övervakade metoder.

Place, publisher, year, edition, pages
2025. , p. 55
Series
TRITA-EECS-EX ; 2025:74
Keywords [en]
Foundation Models, Deep Learning, Computer Vision, Earth Observation, Multispectral Data, Vision Transformer
Keywords [sv]
Foundation Models, Djupinlärning, Datorseende, Jordobservation, Multi- spektrala data, Vision Transformer
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-362116OAI: oai:DiVA.org:kth-362116DiVA, id: diva2:1950547
External cooperation
Thales Services Numeriques
Supervisors
Examiners
Available from: 2025-04-23 Created: 2025-04-08 Last updated: 2025-04-23Bibliographically approved

Open Access in DiVA

fulltext(8340 kB)49 downloads
File information
File name FULLTEXT01.pdfFile size 8340 kBChecksum SHA-512
e8a630a7f8d6bd376d278c6e2d334560ea21af65765374d4ce09c91e5817dcbd955217fd45d8850772729b9e71fd54c75fa0dbc87a2762e43394e7f1df453afa
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 49 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf