kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Disulfide Exchange Reactions: The Bridge Between Processability, Performance, and High‐Throughput Recyclability in Crosslinked Elastomers
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology. DPI, P.O. Box 902, Eindhoven, 5600 AX, The Netherlands.ORCID iD: 0009-0005-3580-0184
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology. DPI, P.O. Box 902, Eindhoven, 5600 AX, The Netherlands.ORCID iD: 0000-0002-5850-8873
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology. DPI, P.O. Box 902, Eindhoven, 5600 AX, The Netherlands.ORCID iD: 0000-0002-7790-8987
2024 (English)In: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 9, no 2Article in journal (Refereed) Published
Abstract [en]

Developing crosslinked elastomers that are easily produced and easily recyclable is complex, usually requiring a compromise between performance and recyclability. However, combining reversible exchange reactions together with phase separation phenomena appears as a promising approach. Herein, a simple and up‐scalable extrusion process is proposed, involving commercial maleated ethylene propylene rubber (EPRgMA), maleated polypropylene (PPgMA), and a suitable crosslinker. It is shown that a crosslinker enabling disulfide exchange reactions can provide local and long‐range rearrangements required for extrusion, yielding a robust crosslinked blend (BlendSS) with strength of 15 MPa and an impressive elongation of 1000%. Moreover, the presence of the disulfide crosslinker provided the required fast exchanges for three repetitive recycling cycles by extrusion with close to 80% retention of initial properties. In comparison, the use of a crosslinker without the capability to establish reversible reactions (BlendCC), yielded crosslinked blends of marginal compatibility, strength of 4 MPa and only 40% elongation. The absence of reversible reactions restricted chain rearrangements and consecutive recycling is only possible by compression molding. The recycled blends presented even lower compatibility, elasticity and thermomechanical performance, demonstrating that the proper design of interfacial interactions between PPgMA and EPRgMA can build a bridge between processability, performance, and high‐throughput recyclability.

Place, publisher, year, edition, pages
Wiley , 2024. Vol. 9, no 2
National Category
Textile, Rubber and Polymeric Materials
Identifiers
URN: urn:nbn:se:kth:diva-362140DOI: 10.1002/adsu.202400711ISI: 001379717500001Scopus ID: 2-s2.0-85212508564OAI: oai:DiVA.org:kth-362140DiVA, id: diva2:1950752
Note

QC 20250409

Available from: 2025-04-09 Created: 2025-04-09 Last updated: 2025-04-16Bibliographically approved
In thesis
1. Covalent Adaptable Networks in Fiber Composites: A Path to Recyclability and Performance
Open this publication in new window or tab >>Covalent Adaptable Networks in Fiber Composites: A Path to Recyclability and Performance
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fiber reinforced polymer composites are entering a new stage, where durability, performance and recyclability, are no longer a choice but a requirement. This work contributes to these efforts by merging the field of covalent adaptable networks (CANs) with reinforcing fibers of different functionality. Two dynamic thermosets were developed; an epoxy thermoset with transesterification exchange reactions (TVx) and a phase-separated crosslinked elastomer with disulfide exchange reactions (BlendSS). Fibers bearing complementary functionalities to the reversible chemistry, were developed and incorporated in the respective matrix. Chemical recycling and mechanical recycling; through compression moulding and melt-extrusion; were used to study the role of fiber surface on composite performance, before and after recycling. Epoxy functionalized aramid fibers (PDA-Si) were introduced to TVx in the form of fiber meshes and short-cut fibers. This yielded PDA-Si composites having ≈22% higher ultimate strength and meshes of 46% higher lap shear strength compared to unmodified aramid fibers (UA). The contribution of PDA-Si for property retainment was suggested after chemical recycling by the 23% higher lap shear strength and in mechanical recycling by the 75% higher tensile stress at break of PDA-Si, compared with UA. Similarly, tetrasulfide functionalized glass fibers (SGF) were developed to promote bonding through the disulfide bonds in BlendSS. This resulted in SGF composites (CompSS-SGF) with 25% higher strength, and 36% higher creep resistance compared to composites with as received and clean glass fibers. After three recycling cycles by melt-extrusion, CompSS-SGF demonstrated ≈10% and ≈26% higher tensile strength and storage modulus compared to its counterparts. This was likely related to the increased availability of sulfur in CompSS-SGF for disulfide exchanges, which also affected the performance at higher temperatures. This works implements commercially available polymers, fibers and chemicals to construct fiber reinforced CANs, demonstrating the promise of the fiber functionality to leverage performance. Moreover, a simple solution to process and recycle CANs with industrially relevant methods such as melt-extrusion, and a route to use fibers to suppress creep was proposed. 

Abstract [sv]

Vi är på väg mot en ny era där hållbarhet, prestanda och återvinningsbarhet för fiberförstärkta polymerbaserade kompositer inte längre är en möjlighet utan ett krav. Arbetet som presenteras här bidrar till dessa insatser genom att kombinera dynamiska polymera nätverk (CAN) med ytfunktionaliserade fibrer. Två dynamiska polymera nätverk utvecklades: en epoxibaserad härdplast med transesterifieringsreaktioner (TVx) som reversibla reaktioner och en fas-separerad tvärbunden elastomer med disulfid-baserade reversibla bindningar (BlendSS). Fibrer med kompletterande funktionalitet till den reversibla kemin utvecklades och inkorporerades i respektive matris. Kemisk och mekanisk återvinning, genom formpressning eller extrudering, användes för att studera rollen av fibrernas ytmodifiering på kompositernas prestanda före och efter återvinning. Epoxidfunktionaliserade aramidfibrer (PDA-Si) tillsattes till TVx som en fiberväv eller som korta fibrer. Detta resulterade i PDA-Si-kompositer med ≈22 % högre brottstyrka och fiberväv-baserade kompositer med 46 % högre skjuvhållfasthet jämfört med ofunktionaliserade fibrer (UA). PDA-Si bidrog till att egenskaperna bibehölls, vilket indikerades av en 23 % högre skjuvhållfasthet och 75 % högre dragspänning vid brott (7 MPa) efter kemisk och mekanisk återvinning jämfört med UA fibrer. På liknande sätt utvecklades tetrasulfidfunktionaliserade glasfibrer (SGF) för att främja disulfidbindningar i BlendSS. Detta resulterade i SGF-kompositer (CompSS-SGF) med 25 % högre styrka och 36 % högre krypmotstånd jämfört med kompositer med obehandlade eller rengjorda glasfibrer. Efter tre återvinningscykler genom extrudering hade CompSS-SGF ≈10 % högre dragstyrka och ≈26 % högre lagringsmodul jämfört med de omodifierade analogerna. Detta relaterar sannolikt till den ökade tillgången på svavel i Comp-SGF för disulfidutbyten, vilket också ledde till ett oväntat krypbeteende vid högre temperaturer. Detta arbete använde kommersiellt tillgängliga polymerer, fibrer och kemikalier för att skapa fiberförstärkta CANs, och visar möjligheterna med fiberfunktionalisering för att förbättra prestandan hos dynamiska polymer nätverks-kompositer. Dessutom föreslås en enkel metod för att bearbeta och återvinna materialen med industriellt relevanta tekniker, samt en strategi för att använda fibrer för att öka krypbeständigheten.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 91
Series
TRITA-CBH-FOU ; 2025:9
Keywords
Recycling, thermoset composites, covalent adaptable networks, fiber functionalization, Återvinning, härdplast, kompositer, dynamisk polymer nätverk, fibrer funktionalitet
National Category
Materials Engineering
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-362360 (URN)978-91-8106-259-5 (ISBN)
Public defence
2025-05-16, Kollegiesalen, Brinellvägen 6, https://kth-se.zoom.us/j/62942074699, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2025-04-22

Available from: 2025-04-22 Created: 2025-04-16 Last updated: 2025-04-29Bibliographically approved

Open Access in DiVA

fulltext(9875 kB)25 downloads
File information
File name FULLTEXT01.pdfFile size 9875 kBChecksum SHA-512
88d65e927e2656726f14c1c78e55f408f5b03059ff5950bfdf457974a4c54939d4b59f12bdf142afeaf580a45753653afbc8a1d5a3d1a3cf64faffb8e695fcd5
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Garfias González, Karla ItzelOdelius, KarinHakkarainen, Minna

Search in DiVA

By author/editor
Garfias González, Karla ItzelOdelius, KarinHakkarainen, Minna
By organisation
Polymer Technology
Textile, Rubber and Polymeric Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 26 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 379 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf