kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mind the Unknown: Risk- and Occlusion-Aware Motion Planning for Autonomous Vehicles
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-2069-6581
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Autonomous vehicles (AVs) must navigate uncertain environments while ensuring safety, particularly in scenarios involving risk and occlusions. This thesis develops structured approaches to risk- and occlusion-aware motion planning, integrating theoretical advancements with real-world validation.

To address risk in motion planning, we introduce a framework that quantifies both the probability and severity of safety violations, enabling AVs to reason about risk while maintaining operational efficiency. Complementing this, we investigate pedestrian-aware motion planning in urban environments, incorporating a harm-based risk model to balance safety and progress in interactions with vulnerable road users.

Occlusions pose a major challenge by limiting direct visibility of critical road users. We develop a method for tracking and reasoning about hidden obstacles using reachability analysis and formal logics. By incorporating prior observations, our approach systematically refines possible states of occluded agents, reducing unnecessary conservatism. For high-speed driving, we refine velocity bounds on occluded traffic participants, preventing worst-case assumptions that could lead to excessive braking. Additionally, we explore vehicle-to-everything (V2X) communication to enhance situational awareness, enabling AVs to infer and share information about occluded regions in real time.

Finally, we propose an occlusion-aware planning framework that integrates tree-based motion planning with reachability-based occlusion tracking. This enables AVs to proactively reason about future observations—or their absence—ensuring robust decision-making under limited sensing. By reducing overly conservative constraints while maintaining safety guarantees, our approach addresses key issues in occlusion-aware motion planning.

Together, these contributions advance the ability of AVs to operate safely and efficiently in demanding environments, supporting scalable real-world deployment.

Abstract [sv]

Autonoma fordon måste fatta säkra beslut trots osäkerheter i trafiken, särskilt i riskfyllda situationer och när sikten är begränsad. Denna avhandling presenterar metoder för att planera ett fordons rörelser på ett sätt som tar hänsyn till både risker och skymda hinder. Här kombineras teoretiska resultat med praktisk validering i realistiska trafikförhållanden.

För att hantera riskerna i planeringen introducerar vi ett ramverk som systematiskt bedömer både sannolikheten och konsekvenserna av potentiella säkerhetsproblem. Detta möjliggör en mer nyanserad plan som tar hänsyn till säkerheten utan att begränsa fordonet i onödan. Vi studerar särskilt planering i stadstrafik och utvecklar en riskmodell som väger säkerhet mot effektiv framkomlighet vid möten med exempelvis fot\-gängare och cyklister.

Skymd sikt utgör en utmaning för autonoma fordon. För att bemöta detta utvecklar vi en metod baserad på räckviddsanalys och logisk slutledning, som kan resonera kring möjliga dolda trafikanter. Genom att använda tidigare observationer kan metoden utesluta omöjliga scenarier och därmed undvika överdrivet defensiva beslut. För motorvägskörning inför vi även antaganden om trafikanters möjliga accelerationer, vilket ytterligare minskar behovet av onödiga inbromsningar. Dessutom undersöker vi hur fordonskommunikation (V2X) kan användas för att dela information om skymda områden och därmed förbättra fordonens beslutsunderlag.

Slutligen föreslår vi ett planeringsramverk där en trädstruktur av möjliga rörelser kombineras med räckviddsanalys för att hantera skymd sikt. Detta tillåter att proaktivt resonera kring framtida observationer och deras möjliga frånvaro. På så sätt kan fordonen fatta säkra och effektiva beslut även när sikten är begränsad. Vår metod adresserar därmed viktiga utmaningar inom området och bidrar till att minska onödiga säkerhetsmarginaler utan att kompromissa med säkerheten. Tillsammans stärker dessa resultat autonoma fordons förmåga att navigera säkert och effektivt i komplexa trafikmiljöer. Detta öppnar för bredare användning i verkliga trafiksystem.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. , p. 58
Series
TRITA-EECS-AVL ; 2025-42
National Category
Robotics and automation
Identifiers
URN: urn:nbn:se:kth:diva-362364ISBN: 978-91-8106-247-2 (print)OAI: oai:DiVA.org:kth-362364DiVA, id: diva2:1952141
Public defence
2025-05-09, Kollegiesalen,Brinellvägen 6, https://kth-se.zoom.us/j/62547376681, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20250415

Available from: 2025-04-15 Created: 2025-04-14 Last updated: 2025-04-28Bibliographically approved
List of papers
1. Risk-aware Motion Planning for Autonomous Vehicles with Safety Specifications
Open this publication in new window or tab >>Risk-aware Motion Planning for Autonomous Vehicles with Safety Specifications
Show others...
2021 (English)In: 2021 32nd IEEE Intelligent Vehicles Symposium (IV), Institute of Electrical and Electronics Engineers (IEEE), 2021, p. 1016-1023Conference paper, Published paper (Refereed)
Abstract [en]

 Ensuring the safety of autonomous vehicles (AVs) in uncertain traffic scenarios is a major challenge. In this paper, we address the problem of computing the risk that AVs violate a given safety specification in uncertain traffic scenarios, where state estimates are not perfect. We propose a risk measure that captures the probability of violating the specification and determines the average expected severity of violation. Using highway scenarios of the US101 dataset and Responsible Sensitive Safety (RSS) as an example specification, we demonstrate the effectiveness and benefits of our proposed risk measure. By incorporating the risk measure into a trajectory planner, we enable AVs to plan minimal-risk trajectories and to quantify trade-offs between risk and progress in traffic scenarios.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021
Series
IEEE Intelligent Vehicles Symposium, Proceedings, ISSN 1931-0587
National Category
Robotics and automation
Identifiers
urn:nbn:se:kth:diva-296090 (URN)10.1109/IV48863.2021.9575928 (DOI)000782373100145 ()2-s2.0-85118889629 (Scopus ID)
Conference
32nd IEEE Intelligent Vehicles Symposium, July 11-17, 2021 Nagoya University, Nagoya, Japan [Virtual]
Note

QC 20220509

Part of proceedings: ISBN 978-172815394-0

Available from: 2021-05-28 Created: 2021-05-28 Last updated: 2025-04-14Bibliographically approved
2. Pedestrian-Aware Motion Planning for Autonomous Driving in Complex Urban Scenarios
Open this publication in new window or tab >>Pedestrian-Aware Motion Planning for Autonomous Driving in Complex Urban Scenarios
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Motion planning in uncertain environments like complex urban areas is a key challenge for autonomous vehicles (AVs). The aim of our research is to investigate how AVs can navigate crowded, unpredictable scenarios with multiple pedestrians while maintaining a safe and efficient vehicle behavior. So far, most research has concentrated on static or deterministic traffic participant behavior. This paper introduces a novel algorithm for motion planning in crowded spaces by combining social force principles for simulating realistic pedestrian behavior with a risk-aware motion planner.

We evaluate this new algorithm in a 2D simulation environment to rigorously assess AV-pedestrian interactions, demonstrating that our algorithm enables safe, efficient, and adaptive motion planning, particularly in highly crowded urban environments—a first in achieving this level of performance. This study has not taken into consideration real-time constraints and has been shown only in simulation so far. Further studies are needed to investigate the novel algorithm in a complete software stack for AVs on real cars to investigate the entire perception, planning and control pipeline in crowded scenarios. We release the code developed in this research as an open-source resource for further studies and development. It can be accessed at the following link: https://github.com/TUM-AVS/PedestrianAwareMotionPlanning.

National Category
Robotics and automation
Identifiers
urn:nbn:se:kth:diva-362135 (URN)
Note

QC 20250409

Available from: 2025-04-08 Created: 2025-04-08 Last updated: 2025-04-14Bibliographically approved
3. Foresee the Unseen: Sequential Reasoning about Hidden Obstacles for Safe Driving
Open this publication in new window or tab >>Foresee the Unseen: Sequential Reasoning about Hidden Obstacles for Safe Driving
Show others...
2022 (English)In: 2022 IEEE Intelligent Vehicles Symposium (IV), Institute of Electrical and Electronics Engineers (IEEE), 2022, p. 255-264Conference paper, Published paper (Refereed)
Abstract [en]

Safe driving requires autonomous vehicles to anticipate potential hidden traffic participants and other unseen objects, such as a cyclist hidden behind a large vehicle, or an object on the road hidden behind a building. Existing methods are usually unable to consider all possible shapes and orientations of such obstacles. They also typically do not reason about observations of hidden obstacles over time, leading to conservative anticipations. We overcome these limitations by (1) modeling possible hidden obstacles as a set of states of a point mass model and (2) sequential reasoning based on reachability analysis and previous observations. Based on (1), our method is safer, since we anticipate obstacles of arbitrary unknown shapes and orientations. In addition, (2) increases the available drivable space when planning trajectories for autonomous vehicles. In our experiments, we demonstrate that our method, at no expense of safety, gives rise to significant reductions in time to traverse various intersection scenarios from the CommonRoad Benchmark Suite.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Series
IEEE Intelligent Vehicles Symposium, ISSN 1931-0587
National Category
Computer graphics and computer vision
Identifiers
urn:nbn:se:kth:diva-320423 (URN)10.1109/IV51971.2022.9827171 (DOI)000854106700037 ()2-s2.0-85135375265 (Scopus ID)
Conference
33rd IEEE Intelligent Vehicles Symposium (IEEE IV), JUN 05-09, 2022, Aachen, Germany
Note

QC 20221107

Part of proceedings: 978-1-6654-8821-1

Available from: 2022-11-07 Created: 2022-11-07 Last updated: 2025-04-14Bibliographically approved
4. Highway-Driving with Safe Velocity Bounds on Occluded Traffic
Open this publication in new window or tab >>Highway-Driving with Safe Velocity Bounds on Occluded Traffic
2024 (English)In: 2024 IEEE International Conference on Robotics and Automation, ICRA 2024, Institute of Electrical and Electronics Engineers (IEEE) , 2024, p. 6828-6835Conference paper, Published paper (Refereed)
Abstract [en]

Limited visibility and sensor occlusions pose pressing safety challenges for advanced driver-assistance systems (ADAS) and autonomous vehicles (AVs). In this work, our pursuit was to strike a balance: a method that ensures safety in occluded scenarios while preventing overly cautious behavior. We argue that such approaches are crucial for AVs' future, particularly when navigating alongside human drivers on highways at high speeds. To this end, we used reachability analysis to find safe velocity bounds on occluded traffic participants. Compared to state-of-the-art methods, we achieved velocity increases in more than 60% of the 230 cut-in scenarios from the highD dataset, without sacrificing safety.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
National Category
Transport Systems and Logistics Computer graphics and computer vision Signal Processing Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-353553 (URN)10.1109/ICRA57147.2024.10610904 (DOI)001294576205016 ()2-s2.0-85202430028 (Scopus ID)
Conference
2024 IEEE International Conference on Robotics and Automation, ICRA 2024, Yokohama, Japan, May 13 2024 - May 17 2024
Note

Part of ISBN 9798350384574

QC 20240924

Available from: 2024-09-19 Created: 2024-09-19 Last updated: 2025-04-14Bibliographically approved
5. Share the Unseen: Sequential Reasoning About Occlusions Using Vehicle-to-Everything Technology
Open this publication in new window or tab >>Share the Unseen: Sequential Reasoning About Occlusions Using Vehicle-to-Everything Technology
Show others...
2024 (English)In: IEEE Transactions on Control Systems Technology, ISSN 1063-6536, E-ISSN 1558-0865, p. 1-14Article in journal (Refereed) Epub ahead of print
Abstract [en]

Vehicle-to-everything (V2X) communication holds significant promise for augmenting autonomous driving capabilities. Particularly in dense traffic with occluded areas, V2X can be used to share information about the respective observed areas between traffic participants. In turn, reducing uncertainty about unseen areas can lead to less conservative behaviors while maintaining collision avoidance.This paper aims to leverage V2X to improve situation awareness for trajectory planning. We particularly address two challenges: First, the ego vehicle may not always receive up-to-date information. Second, some areas may remain occluded despite receiving information from other participants.In this work, we fuse the received information about the detected free space. We use reachability analysis to compute areas that are guaranteed to be free despite being occluded. This way, we can maintain collision-avoidance guarantees. We demonstrate the benefits of our proposed method both in simulations and physical experiments.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
National Category
Computer Sciences
Identifiers
urn:nbn:se:kth:diva-359348 (URN)10.1109/tcst.2024.3499832 (DOI)001367629700001 ()2-s2.0-85210927559 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20250203

Available from: 2025-01-30 Created: 2025-01-30 Last updated: 2025-04-14Bibliographically approved
6. Hope for the Best, Prepare for the Worst: Occlusion-Aware Contingency Planning for Autonomous Vehicles
Open this publication in new window or tab >>Hope for the Best, Prepare for the Worst: Occlusion-Aware Contingency Planning for Autonomous Vehicles
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The deployment of autonomous vehicles in urban environments introduces significant safety challenges, particularly in scenarios with occlusions, where critical traffic participants may be hidden from view. Recent accidents involving driverless vehicles highlight the importance of motion planners that explicitly addresses the risks posed by occlusions.

In this work, we propose a formal, occlusion-aware trajectory planning framework that guarantees collision avoidance even when there are possible hidden traffic participants. Building on our previous methods that apply reachability analysis to sequentially determine the possible states of hidden traffic participants, we integrate a tree-based motion planner capable of reasoning over future observations and the absence thereof. This approach reduces conservativeness while maintaining safety guarantees.

We demonstrate the effectiveness of our framework in a challenging simulated occluded scenario, showing that it pro-actively and efficiently guarantees collision-avoidance.

National Category
Robotics and automation
Identifiers
urn:nbn:se:kth:diva-362136 (URN)
Note

QC 20250415

Available from: 2025-04-14 Created: 2025-04-14 Last updated: 2025-04-15Bibliographically approved

Open Access in DiVA

fulltext(33439 kB)692 downloads
File information
File name FULLTEXT01.pdfFile size 33439 kBChecksum SHA-512
59c49e2558ea61d5cc0eda11cc867a99d8ad57324479fbe113f6fa25ccc795ede6059e00133b976727ad09a030cdc63969cacb13b6773b12aee8896ab4004368
Type fulltextMimetype application/pdf

Authority records

Nyberg, Truls

Search in DiVA

By author/editor
Nyberg, Truls
By organisation
Robotics, Perception and Learning, RPL
Robotics and automation

Search outside of DiVA

GoogleGoogle Scholar
Total: 695 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1285 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf