kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spatial in situ mapping of cellulose and other biopolymers reveals the 3D tissue architecture in the green algae Ulva fenestrata
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.ORCID iD: 0000-0002-0492-0395
University of Gothenburg, Department of Marine Sciences-Tjärnö.ORCID iD: 0000-0001-8410-9932
Linköping University, Department of Physics, Chemistry and Biology (IFM).ORCID iD: 0000-0002-5582-140X
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.ORCID iD: 0000-0002-1631-1781
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The green seaweed Ulva fenestrata plays a key role in marine ecosystems and holds increasing potential in aquaculture. Despite this, its three-dimensional (3D) tissue architecture and anatomy remain underexplored. This study applies multimodal fluorescence microscopy combined with optotracing to map biopolymers and structural features in native Ulva tissue spatially. Using the fluorescent tracer Carbotrace 680, cellulose was localized in situ within the cell walls, while oligo/polyaromatic compounds were visualized across multiple scaffold layers via autofluorescence. Lambda scanning validated the fluorescence detection settings for cellulose stained by the tracer (Ex. 561 nm, Em. 570–631 nm), oligo/polyaromatics (Ex. 405 nm, Em. 408–505 nm), and chlorophyll (Ex. 639 nm, Em. 649–693 nm). Spatially resolved biopolymer anatomy maps were generated for blade and rhizoidal tissues and used to construct 3D tissue models. The outermost blade layer exhibited a sandwich-like architecture, and a median layer separating the two cell layers was described for the first time. Notably, this median layer was >11 times thicker in rhizoidal than in blade tissue, comprising 56% and 7% of total thickness, respectively. Spectral differences in rhizoidal cells also indicated possible cellular heterogeneity or differential development stages. Collectively, the variances in biopolymer anatomy and 3D architecture may reflect tissue-specific functional specialization of the macroalga. This imaging-based approach provides new perspectives into algal biology and supports the multi-sectorial potential valorization of macroalgae in material science and biorefinery applications.

National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:kth:diva-362892OAI: oai:DiVA.org:kth-362892DiVA, id: diva2:1955211
Note

QC 20250430

Available from: 2025-04-29 Created: 2025-04-29 Last updated: 2025-04-30Bibliographically approved
In thesis
1. Biopolymer Networks from Terrestrial and Aquatic Biomasses
Open this publication in new window or tab >>Biopolymer Networks from Terrestrial and Aquatic Biomasses
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Today’s sustainability challenges demand more than new materials - they require new ways of thinking about the resources we already have to support zero waste strategies. This thesis explores the valorization of underutilized biomasses - specifically the terrestrial crop Lupinus angustifolius (Lupin) and the marine macroalga Ulva fenestrata (Ulva) - as alternative feedstocks for bio-based materials. These two biomasses were selected for their dual functionality: both are already cultivated for food applications, yet their residual non-edible fractions remain largely unexplored. By combining structural biology, bioprocess engineering, materials science, and bioimaging, the thesis establishes a comprehensive, interdisciplinary framework for biomass characterization and conversion. Biopolymer mapping using multimodal fluorescence imaging and optotracing revealed the tissue architecture and native biopolymer distribution in Lupin residues and Ulva thalli. From Lupin, lignocellulose was extracted through mild alkaline pretreatment and defibrillated into lignin-containing microfibrillated cellulose (L-MFC). In Ulva, complex structural features, including oligo-/polyaromatic-rich layers and rhizoidal fibrillar structures, were discovered, prompting a redefinition of its tissue terminology. A decellularization-inspired approach was then developed to recover tissue scaffolds from Ulva, leveraging its naturally thin, two-cell-layered structure to remove cellular content while preserving scaffold integrity. Finally, two material design strategies were employed: a bottom-up approach for Lupin-derived L-MFC films, exploiting their nanoscale fibrillar network for structural organization, and a top-down approach for Ulva-based films, preserving the intrinsic tissue scaffold architecture. The resulting materials demonstrated structural integrity while preserving key biopolymer networks. Across the entire biomass-to-material workflow, multimodal fluorescence imaging combined with optotracing was integrated and adapted as a novel analytical tool, providing non-destructive, real-time and high-resolution information.

Abstract [sv]

Dagens hållbarhetsutmaningar kräver mer än bara nya material – de kräver ett nytt sätt att tänka kring resurser vi redan har. Denna avhandling utforskar möjligheten att använda underutnyttjade biomassor – specifikt jordbruksgrödan Lupinus angustifolius (lupin) och den marina makroalgen Ulva fenestrata (Ulva) – som alternativa råvaror för biobaserade material. Dessa två biomassor valdes utifrån sin dubbla funktionalitet: båda odlas redan idag för livsmedelsändamål, medan resterande oätliga delar förblir till stor del outforskade.Genom att kombinera strukturbiologi, bioprocessteknik, materialvetenskap och avbildningsteknik etableras ett interdisciplinärt ramverk för karakterisering och omvandling av biomassa. Kartläggning och avbildning av biopolymerer med multimodal fluorescensmikroskopi och optotracing avslöjade vävnadsarkitekturen och den naturliga fördelningen av biopolymerer i olika växtdelar hos lupin och Ulva. Från lupin extraherades lignocellulosa via mild alkalisk förbehandling som sedan defibrillerades till lignininnehållande mikrofibrillerad cellulosa (L-MFC). I Ulva upptäcktes komplexa strukturer, inklusive oligo-/polyaromatiska lager och fibrillära strukturer i rhizoidzonen, vilket föranledde en omdefinition av dess vävnadsterminologi. En metod inspirerad av vävnadsdecellularisering utvecklades därefter för att isolera en cellväggsstruktur från Ulva. Cellinnehållet avlägsnades under milda betingelser för att bevara dess naturligt endast två cellager tunna struktur och integritet. Slutligen applicerades två olika strategier för materialdesign: en bottom-up-metod för att skapa filmer av lupin-baserad L-MFC, där dess fibrillära nätverk nyttjades för strukturell organisering, och en top-down-metod för Ulva-baserade filmer där den ursprungliga vävnadsarkitekturen bevarades. De resulterande materialen uppvisade god strukturell integritet samtidigt som viktiga biopolymernätverk bevarades. Multimodal fluorescensavbildning och optotracing integrerades och anpassades som ett nytt analytiskt verktyg, vilket möjliggjorde icke-förstörande, realtids- och högupplöst analys genom hela processen från biomassa till material.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. p. 76
Series
TRITA-CBH-FOU ; 2025:12
Keywords
Biomass valorization, crops, macroalgae, Lupin, Ulva, lignocellulose, biopolymer, L-MFC, decellularization, bottom-up, top-down, optotracing, fluorescence, Carbotrace 680, Carbotrace 630, Biomassa, jordbruksgrödor, makroalger, Lupin, Ulva, lignocellulosa, biopolymer, L-MFC, decellularisering, bottom-up, top-down, optotracing, fluorescens, Carbotrace 680, Carbotrace 630
National Category
Materials Engineering
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-362908 (URN)978-91-8106-280-9 (ISBN)
Public defence
2025-06-02, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20250506

Available from: 2025-05-06 Created: 2025-04-30 Last updated: 2025-05-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Schmidt, Alina E. M.Edlund, UlricaRichter-Dahlfors, Agneta

Search in DiVA

By author/editor
Schmidt, Alina E. M.Steinhagen, SophieNilsson, K. Peter R.Edlund, UlricaRichter-Dahlfors, Agneta
By organisation
Polymer Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf