kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
From seaweed to scaffold - A top-down approach for liberating and utilizing the biopolymer cell wall matrix of Ulva fenestrata
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.ORCID iD: 0000-0002-0492-0395
University of Gothenburg, Department of Marine Sciences-Tjärnö.ORCID iD: 0000-0001-8410-9932
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden.ORCID iD: 0000-0002-5479-7591
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.ORCID iD: 0000-0002-1631-1781
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This study presents a decellularization-inspired strategy for isolating the native cell wall scaffold of the tissue of the green macroalgae Ulva fenestrata as platform for bio-based film material. Advancing from conventional bottom-up biopolymer extraction, this top-down approach aims to preserve the inherent hierarchical architecture of the cell wall while reducing chemical use and processing steps. Several extraction protocols were evaluated, revealing that surfactant addition and mechanical pretreatment significantly enhanced decellularization efficiency and scaffold integrity. A high-throughput fluorescence spectroscopy-based method was established for real-time monitoring of pigment extraction kinetics. Cytosolic components were removed, evidenced by the presence of free-floating particles and sheet-like structures, suggesting outer layer detachment. Particle size distribution revealed three distinct fractions, with the smallest likely representing cytosolic remnants.  Biopolymer anatomy mapping revealed that tissue recovery varied with biomass architecture: In the blade tissue, thinner-walled tissues were more susceptible to treatment, whereas thicker-walled tissues retained integrity through an intermediate lamella. Additionally, in both blade and rhizoidal tissues, impairment of the outermost layer significantly enhanced decellularization efficiency. While Carbotrace 680 effectively stained Ulva cell walls in blade tissue, it showed no affinity for the rhizoidal cell walls, which instead were stained by Carbotrace 630, highlighting differences in tissue architecture. Recovered material was fractionated by size for film fabrication into fine, coarse, and mixed films. Tensile testing demonstrated distinct mechanical profiles among the film categories. This sustainable, biomimetic method offers a promising route for developing bio-based films directly from Ulva tissue, preserving native structure while enabling material tunability through process parameters and particle size selection.

National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:kth:diva-362894OAI: oai:DiVA.org:kth-362894DiVA, id: diva2:1955226
Note

QC 20250430

Available from: 2025-04-29 Created: 2025-04-29 Last updated: 2025-04-30Bibliographically approved
In thesis
1. Biopolymer Networks from Terrestrial and Aquatic Biomasses
Open this publication in new window or tab >>Biopolymer Networks from Terrestrial and Aquatic Biomasses
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Today’s sustainability challenges demand more than new materials - they require new ways of thinking about the resources we already have to support zero waste strategies. This thesis explores the valorization of underutilized biomasses - specifically the terrestrial crop Lupinus angustifolius (Lupin) and the marine macroalga Ulva fenestrata (Ulva) - as alternative feedstocks for bio-based materials. These two biomasses were selected for their dual functionality: both are already cultivated for food applications, yet their residual non-edible fractions remain largely unexplored. By combining structural biology, bioprocess engineering, materials science, and bioimaging, the thesis establishes a comprehensive, interdisciplinary framework for biomass characterization and conversion. Biopolymer mapping using multimodal fluorescence imaging and optotracing revealed the tissue architecture and native biopolymer distribution in Lupin residues and Ulva thalli. From Lupin, lignocellulose was extracted through mild alkaline pretreatment and defibrillated into lignin-containing microfibrillated cellulose (L-MFC). In Ulva, complex structural features, including oligo-/polyaromatic-rich layers and rhizoidal fibrillar structures, were discovered, prompting a redefinition of its tissue terminology. A decellularization-inspired approach was then developed to recover tissue scaffolds from Ulva, leveraging its naturally thin, two-cell-layered structure to remove cellular content while preserving scaffold integrity. Finally, two material design strategies were employed: a bottom-up approach for Lupin-derived L-MFC films, exploiting their nanoscale fibrillar network for structural organization, and a top-down approach for Ulva-based films, preserving the intrinsic tissue scaffold architecture. The resulting materials demonstrated structural integrity while preserving key biopolymer networks. Across the entire biomass-to-material workflow, multimodal fluorescence imaging combined with optotracing was integrated and adapted as a novel analytical tool, providing non-destructive, real-time and high-resolution information.

Abstract [sv]

Dagens hållbarhetsutmaningar kräver mer än bara nya material – de kräver ett nytt sätt att tänka kring resurser vi redan har. Denna avhandling utforskar möjligheten att använda underutnyttjade biomassor – specifikt jordbruksgrödan Lupinus angustifolius (lupin) och den marina makroalgen Ulva fenestrata (Ulva) – som alternativa råvaror för biobaserade material. Dessa två biomassor valdes utifrån sin dubbla funktionalitet: båda odlas redan idag för livsmedelsändamål, medan resterande oätliga delar förblir till stor del outforskade.Genom att kombinera strukturbiologi, bioprocessteknik, materialvetenskap och avbildningsteknik etableras ett interdisciplinärt ramverk för karakterisering och omvandling av biomassa. Kartläggning och avbildning av biopolymerer med multimodal fluorescensmikroskopi och optotracing avslöjade vävnadsarkitekturen och den naturliga fördelningen av biopolymerer i olika växtdelar hos lupin och Ulva. Från lupin extraherades lignocellulosa via mild alkalisk förbehandling som sedan defibrillerades till lignininnehållande mikrofibrillerad cellulosa (L-MFC). I Ulva upptäcktes komplexa strukturer, inklusive oligo-/polyaromatiska lager och fibrillära strukturer i rhizoidzonen, vilket föranledde en omdefinition av dess vävnadsterminologi. En metod inspirerad av vävnadsdecellularisering utvecklades därefter för att isolera en cellväggsstruktur från Ulva. Cellinnehållet avlägsnades under milda betingelser för att bevara dess naturligt endast två cellager tunna struktur och integritet. Slutligen applicerades två olika strategier för materialdesign: en bottom-up-metod för att skapa filmer av lupin-baserad L-MFC, där dess fibrillära nätverk nyttjades för strukturell organisering, och en top-down-metod för Ulva-baserade filmer där den ursprungliga vävnadsarkitekturen bevarades. De resulterande materialen uppvisade god strukturell integritet samtidigt som viktiga biopolymernätverk bevarades. Multimodal fluorescensavbildning och optotracing integrerades och anpassades som ett nytt analytiskt verktyg, vilket möjliggjorde icke-förstörande, realtids- och högupplöst analys genom hela processen från biomassa till material.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. p. 76
Series
TRITA-CBH-FOU ; 2025:12
Keywords
Biomass valorization, crops, macroalgae, Lupin, Ulva, lignocellulose, biopolymer, L-MFC, decellularization, bottom-up, top-down, optotracing, fluorescence, Carbotrace 680, Carbotrace 630, Biomassa, jordbruksgrödor, makroalger, Lupin, Ulva, lignocellulosa, biopolymer, L-MFC, decellularisering, bottom-up, top-down, optotracing, fluorescens, Carbotrace 680, Carbotrace 630
National Category
Materials Engineering
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-362908 (URN)978-91-8106-280-9 (ISBN)
Public defence
2025-06-02, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20250506

Available from: 2025-05-06 Created: 2025-04-30 Last updated: 2025-05-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Schmidt, Alina E. M.Richter-Dahlfors, AgnetaEdlund, Ulrica

Search in DiVA

By author/editor
Schmidt, Alina E. M.Steinhagen, SophieRichter-Dahlfors, AgnetaEdlund, Ulrica
By organisation
Polymer TechnologyFibre- and Polymer Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf