kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The effect of temperature and load as a stressor for Proton Exchange Membrane Fuel Cells durability
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0003-4770-9554
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0001-5755-7967
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-362913OAI: oai:DiVA.org:kth-362913DiVA, id: diva2:1955328
Note

Submitted to the Journal of Power Sources

QC 20250430

Available from: 2025-04-29 Created: 2025-04-29 Last updated: 2025-05-02Bibliographically approved
In thesis
1. Analysis of proton exchange membrane fuel cells operated at Intermediate temperatures (IT: 80—120 °C)
Open this publication in new window or tab >>Analysis of proton exchange membrane fuel cells operated at Intermediate temperatures (IT: 80—120 °C)
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fuel cells convert energy stored in hydrogen into electricity. As a zero-emission technology, they represent a sustainable alternative to conventional combustion engines, particularly for heavy-duty vehicles. Proton exchange membrane fuel cells (PEMFCs) are used in vehicles and typically operate up to 80 °C. To facilitate the cooling of PEMFCs, slightly rising the operating temperature to the range of 80-120 °C, defined as intermediate temperature (IT), would be desirable.

The aim of the thesis is to electrochemically analyze the impact of IT operation on commercially available PEMFC materials. Results show that increasing the temperature has multiple effects on the cell. Increased ionic conductivity, faster reaction kinetics and reduced mass transport resistance are counteracted by a negative shift of the equilibrium potential, enhanced corrosion of the carbon support, and reduced gas barrier properties. Additionally, if the humidity and the cell pressure are constant, the partial pressure of oxygen is reduced at higher temperature, which limits the cell performance. Finally, a higher temperature leads to faster degradation. The ultimate failure is attributed to the formation of pinholes in the membrane, but the polymer conductivity and the catalyst's electrochemical surface area are also negatively affected. 

Despite a scarcity of comparable data above 80 °C, the main obstacle for IT-PEMFCs is apparently the lack of stable materials. Current state-of-the-art polymers for PEMFCs are based on perfluorosulfonic acid (PFSA), whose sustainability has recently been questioned. Alternatively, fluorine-free hydrocarbon-based polymers investigated here show comparable results up to 100°C, but cannot tolerate operation at 120 °C. More research is needed to further develop sustainable materials and to allow continuous operation of PEMFCs in the intermediate temperature range. 

Abstract [sv]

Bränsleceller omvandlar energin lagrad i vätgas till elektricitet. Som nollemissionsteknik utgör de ett hållbarare alternativ till konventionella förbränningsmotorer. Vätgasens höga energiinnehåll gör dem särskilt lovande för tunga fordon. I fordon används vanligtvis protonledande membranbränsleceller (PEMFC) med en driftstemperatur runt 80 °C. För att underlätta kylningen av PEMFC, vore det önskvärt att kunna använda den vid en något förhöjd temperatur, från 80 till 120 °C, definierad som en mellantemperatur (IT). 

Syftet med avhandlingen är att elektrokemiskt analysera inverkan av IT-drift på kommersiellt tillgängliga PEMFC-material. Resultaten visar att en ökning av temperaturen har flera effekter på cellen: ökad jonledningsförmåga, snabbare reaktionskinetik och minskad masstransportmotstånd motverkas av en negativ förskjutning av jämviktspotentialen, ökad korrosion av katalysatorns bärarkol och försämrade gasbarriäregenskaper hos membranet. Dessutom, om fuktigheten och celltrycket är konstanta, minskar syrepartialtrycket vid högre temperatur, vilket begränsar cellens prestanda. I förlängningen orsakar den förhöjda temperaturen en snabbare nedbrytning av PEMFC som slutligen havererar genom att hål bildas i membranet. Även polymerelektrolytens ledningsförmåga och katalysatorns aktiva yta minskar vid långvarig drift.

Det saknas jämförbara data över 80 °C, men uppenbart är det största hindret för IT-PEMFC bristen på stabila material. Nuvarande polymerelektrolyter för PEMFC är baserade på perfluorsulfonsyra (PFSA), vars miljövänlighet nyligen har ifrågasatts. Alternativa fluorfria kolvätebaserade polymerer som undersökts här visar jämförbara resultat upp till 100 °C, men tolererar inte drift vid 120 °C. Mer forskning behövs för att utveckla hållbara material för att möjliggöra kontinuerlig drift av PEMFC i mellantemperaturintervallet.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 64
Series
TRITA-CBH-FOU ; 2025:10
Keywords
PEMFCs, intermediate temperatures, PFSAs, electrochemical performance, degradation, PEMFC, mellantemperaturer, PFSA, elektrokemisk prestanda, nedbrytning
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-363008 (URN)978-91-8106-272-4 (ISBN)
Public defence
2025-05-27, https://kth-se.zoom.us/webinar/register/WN_nbT8YAdmQje5AfqVN9hAYw, F3, Lindstedtsvägen 26, https://kth-se.zoom.us/webinar/register/WN_nbT8YAdmQje5AfqVN9hAYw, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, ARC19-0026
Note

QC 20250505

Available from: 2025-05-05 Created: 2025-05-02 Last updated: 2025-05-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Eriksson, BjörnButori, MartinaLagergren, CarinaWreland Lindström, RakelLindbergh, Göran

Search in DiVA

By author/editor
Eriksson, BjörnButori, MartinaLagergren, CarinaWreland Lindström, RakelLindbergh, Göran
By organisation
Applied Electrochemistry
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf