kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental study and simulation of metallic melt infiltration into porous media
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Science and Engineering.ORCID iD: 0000-0002-1045-1919
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Modeling corium melt infiltration into porous debris beds is crucial for predicting and mitigating severe accidents in nuclear power plants. A comprehensive understanding of melt infiltration requires both experimental and numerical approaches. 

Experimentally, two key studies are conducted: One quantifies the wettability of various surfaces by metallic melt, while the other examines one-dimensional melt infiltration dynamics in porous media composed of corresponding materials (MRSPOD-1D). The results indicate that wettability significantly influences infiltration dynamics, with wettable surfaces facilitating initial infiltration and non-wettable surfaces impeding it. 

Numerically, a multiscale modeling framework is employed, spanning from an interface- resolved (pore-scale) method to a space-averaged (macroscopic) approach. The numerical study of this thesis first focuses on developing and validating a pore-scale numerical model that simulates molten metal relocation using interface tracking methods. The model integrates the Level-Set (LS) method to track the metal-gas interface and the enthalpy-porosity approach to account for phase changes. Validation is performed using REMCOD-E8 and REMCOD-E9 experimental data. 

Building on the experimental and pore-scale findings, a macroscopic model is developed by coupling the LS method with the Brinkman equations. The macroscopic model is validated against MRSPOD-1D and REMCOD experiments and further assessed through comparisons with pore-scale simulations. 

The multiscale modeling approach reveals the complex interplay among particle surface wettability, pore size, the melt pressure head, melt superheat, and particulate bed temperature on the dynamics of the melt infiltration: (1) enhanced surface wettability consistently promotes melt infiltration and heat transfer across all Bond numbers, though it can also trigger early solidification, particularly at low Bond numbers; (2) melt infiltration becomes more sensitive to the wettability as pore size decreases, occurring in non-wettable media only when melt pressure overcomes capillary resistance, while this sensitivity diminishes as pore size increases; (3) at high Bond numbers, infiltration rates strongly depend on the initial melt pressure head, which drives faster infiltration until the melt layer atop the bed is depleted; (4) higher initial particulate bed temperatures and melt superheat enhance infiltration, whereas lower temperatures may cause solidification arrest, indicating that additional heat sources in reactor-relevant scenarios could promote remelting and facilitate deeper infiltration; (5) pore-scale simulations more accurately capture infiltration dynamics when solidification occurs, whereas both pore-scale and macroscopic models yield comparable results in high-temperature cases without solidification. 

This thesis advances the understanding of melt infiltration mechanisms and provides validated tools for severe accident modeling, which are critical for enhancing severe accident management strategies. 

Abstract [sv]

Att modellera koriumsmältinfiltration i porösa brusbädd är kritiskt för att förutsäga och mildra svåra haverier i kärnkraftverk. En omfattande förståelse av smältinfiltration kräver både experimentella och numeriska metoder. 

Experimentellt genomförs två huvudstudier: Den ena kvantifierar vätningen hos olika ytor av metalliska smältor, medan den andra undersöker endimensionell smältinfiltrationsdynamik i porösa medier sammansatta av motsvarande material (MRSPOD-1D). Resultaten indikerar att vätbarheten signifikant påverkar infiltrationsdynamiken, med vätbara ytor som underlättar initial infiltration och icke vätbara ytor som hindrar den. 

Numeriskt används ett flerskaligt modelleringsramverk, som spänner från en upplösning i skalan av gränssnittet mellan porerna och fluiden, till en rymdgenomsnittlig metod i makroskopisk skala. Den numeriska studien av denna avhandling fokuserar först på att utveckla och validera en numerisk modell i porskala som simulerar förflyttningen av smält metall med metoder som spårar gränssnittet. Modellen integrerar metoden Level-Set (LS) för att spåra metall-gas-gränssnittet och entalpi-porositetsmetoden för att ta hänsyn till fasförändringar. Validering utförs med hjälp av REMCOD-E8- och REMCOD-E9-experiment. 

Med utgångspunkt i de experimentella fynden och fynden i porskalan utvecklas en makroskopisk modell genom att koppla LS-metoden med Brinkman-ekvationerna för att approximera smältinfiltrationsdynamiken. Modellen valideras gentemot MRSPOD-1D och REMCOD-experiment och utvärderas vidare genom jämförelser med simuleringar i porskala. 

Den flerskaliga modelleringsmetoden avslöjar det komplexa samspelet mellan partikelytornas vätbarhet, porstorlek, smältans tryckhöjd, smältans fallhöjd, smältöverhettning och partikelbäddtemperatur på dynamiken i smältinfiltrationen: (1) förbättrad ytvätningsförmåga främjar konsekvent smältinfiltration och värmeöverföring över alla Bondtal, även om den också kan orsaka tidig förstelning, särskilt vid låga Bondtal; (2) smältinfiltration blir mer känslig för vätningsförmågan när porstorleken minskar, och inträffar i icke-vätbara medier endast när smälttrycket övervinner kapillärmotståndet, medan denna känslighet minskar när porstorleken ökar; (3) vid höga Bondtal beror infiltrationshastigheterna starkt på det initiala smälttryckspelaren, vilket driver snabbare infiltration tills smältlagret ovanpå bädden är uttömt; (4) förhöjda initiala temperaturer i partikelbädden och smältans överhettning främjar infiltrationen, medan lägre temperaturer kan leda till stelning som avbryter processen, vilket tyder på att ytterligare värmekällor i reaktorrelevanta scenarier skulle kunna främja omsmältning och underlätta djupare infiltration; (5) porskalesimuleringar fångar infiltrationsdynamiken mer exakt när förstelning inträffar, medan både porskale- och makroskopiska modeller ger jämförbara resultat i högtemperaturfall utan stelning. 

Denna avhandling främjar förståelsen av smältinfiltrationsmekanismer och tillhandahåller validerade verktyg för modellering av svåra haverier, som är avgörande för att förbättra strategier för hantering av svåra haverier. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025.
Keywords [en]
Severe accident, corium melt, melt infiltration, porous media, phase change, solidification, melting, wettability.
Keywords [sv]
Allvarlig olycka, koriumsmälta, smältinfiltration, porösa material, fasövergång, stelning, smältning, vätbarhet.
National Category
Metallurgy and Metallic Materials Energy Engineering Fluid Mechanics
Research subject
Physics, Nuclear Engineering
Identifiers
URN: urn:nbn:se:kth:diva-363163ISBN: 978-91-8106-301-1 (print)OAI: oai:DiVA.org:kth-363163DiVA, id: diva2:1956613
Public defence
2025-06-10, FA31, Roslagstullsbacken 21, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2025-05-06

Available from: 2025-05-06 Created: 2025-05-06 Last updated: 2025-05-06Bibliographically approved
List of papers
1. Modeling melt relocation with solidification and remelting using a coupled level-set and enthalpy-porosity method
Open this publication in new window or tab >>Modeling melt relocation with solidification and remelting using a coupled level-set and enthalpy-porosity method
Show others...
2024 (English)In: Journal of Materials Research and Technology, ISSN 2238-7854, E-ISSN 2214-0697, Vol. 33, p. 9888-9897Article in journal (Refereed) Published
Abstract [en]

A numerical model to simulate molten metal relocation with phase change is proposed, coupling the level-set method to track the metal-gas interface and an enthalpy-porosity model to handle phase changes between solid and liquid metal. This coupling simultaneously solves the evolution of the metal-gas interface and liquid-solid metal. The numerical model is validated by a melting experiment involving a Sn–Bi eutectic alloy on a copper substrate, wherein the alloy's transient morphology and spreading diameter are measured. The numerical simulation effectively replicates the observed melting and spreading behaviors of the metal on the solid surface. Further validations, including a melt infiltration simulation and experiment, are consistent with findings from previous research. These simulations affirm the model's capability and efficiency in accurately representing the dynamics of melt relocation across various geometries, even within complex porous structures.

Place, publisher, year, edition, pages
Elsevier BV, 2024
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-357436 (URN)10.1016/j.jmrt.2024.12.025 (DOI)001375528800001 ()2-s2.0-85211062463 (Scopus ID)
Note

QC 20241210

Available from: 2024-12-06 Created: 2024-12-06 Last updated: 2025-05-06Bibliographically approved
2. A numerical study on metallic melt infiltration in porous media and the effect of solidification
Open this publication in new window or tab >>A numerical study on metallic melt infiltration in porous media and the effect of solidification
2024 (English)In: Nuclear Engineering and Design, ISSN 0029-5493, E-ISSN 1872-759X, Vol. 430, p. 113687-113687, article id 113687Article in journal (Refereed) Published
Abstract [en]

The melt infiltration in porous debris is of importance to severe accident prediction and mitigation in nuclear power plants (NPPs), but its mechanism remains elusive. In this study, a computational fluid dynamics (CFD) model is proposed to simulate the evolution of melt infiltration within porous media, incorporating both solidification and melting processes. The CFD model is validated against the experiment (REMCOD facility) and Moving Particle Semi-implicit (MPS) simulation results. Building upon this validated model, the influence of the melt superheat, the initial particle temperature, and its surface wettability on melt infiltration dynamics are mainly analyzed. It is found that increased initial melt superheat enhances melt infiltration length and rate; higher initial particle temperatures promote deeper and faster infiltration, while lower temperatures may result in solidification that blocks further infiltration. Additionally, the wettable particulate bed can enhance melt relocation and heat transfer, but it also accelerates the solidification of the melt, which complicates the infiltration process. Furthermore, phase changes could intensify melt flow instability. This work may expand our understanding of melt infiltration dynamics and pave the way to severe accident modeling in NPPs. 

Place, publisher, year, edition, pages
Elsevier BV, 2024
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-357435 (URN)10.1016/j.nucengdes.2024.113687 (DOI)001354061800001 ()2-s2.0-85208269827 (Scopus ID)
Note

QC 20241210

Available from: 2024-12-06 Created: 2024-12-06 Last updated: 2025-05-06Bibliographically approved
3. An experimental study on the impact of particle surface wettability on melt infiltration in particulate beds
Open this publication in new window or tab >>An experimental study on the impact of particle surface wettability on melt infiltration in particulate beds
Show others...
2024 (English)In: Annals of Nuclear Energy, ISSN 0306-4549, E-ISSN 1873-2100, Vol. 206, article id 110664Article in journal (Refereed) Published
Abstract [en]

Melt infiltration into porous media is an intriguing phenomenon that holds immense significance across various sciences and technologies. In this work, the problem of metallic melt infiltration in particulate beds is investigated for understanding and prediction of severe accident progression associated with a molten pool penetrating through an underlying debris bed which may form in the reactor core or in the lower head of a light water reactor. The present study aims to quantify the effect of particle surface's wettability on melt infiltration kinetics. For this purpose, two categories of experiment are conceived and carried out to measure the wettability of different material surfaces by melt and to characterize melt infiltration kinetics in one-dimensional particulate beds, respectively. The melt material is tin–bismuth eutectic alloy with a melting point of 139 °C. Copper (Cu), stainless steel (SS), Tin (Sn) and tin-coated stainless steel (Sn-coated SS) are chosen as materials of substrates and particles in wettability measurement and melt infiltration study. The particulate beds, packed with 1.5 mm spheres, are preheated to 200 °C before the melt infiltration begins. The experimental data of wettability measurement shows that the contact angles of liquid Sn-Bi eutectic on the above-mentioned material surfaces range from 79° to 135°. The results of melt infiltration tests confirm the significant effect of wettability on melt penetration kinetics. The capillary force plays a significant role in the initial infiltration of particulate beds. Specifically, a wettable particulate bed enhances the initial melt infiltration, whereas non-wettable beds hinder it.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Melt infiltration, Multi-phase flow, Porous media, Surface wettability
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-347296 (URN)10.1016/j.anucene.2024.110664 (DOI)001246740700001 ()2-s2.0-85194159792 (Scopus ID)
Note

QC 20240702

Available from: 2024-06-10 Created: 2024-06-10 Last updated: 2025-05-06Bibliographically approved
4. A Numerical Study of Melt Penetration into a Particulate Bed
Open this publication in new window or tab >>A Numerical Study of Melt Penetration into a Particulate Bed
2023 (English)In: Proceedings of the 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2023, American Nuclear Society , 2023, p. 660-669Conference paper, Published paper (Refereed)
Abstract [en]

Motivated by a need to characterise debris remelting phenomena which may occur during the progression of a severe accident in light water reactors, experimental studies on melt penetration in a debris bed have been carried out at KTH. To help understand experimental observations and obtain more detailed information of melt infiltration inside debris beds, a numerical study on melt penetration in particulate beds is presented in this paper. The Level set method was adopted through the COMSOL Multi-physics platform to track the melt-gas multiphase flow in particulate beds. The numerical model is primarily validated against available experiments. Further simulation results show the bed's wettability significantly affects the dynamics of melt penetration in a preheated particulate bed when the capillary force is relatively higher than the inertial force. In addition, melt initially penetrates deeper and faster in wettable particulate beds.

Place, publisher, year, edition, pages
American Nuclear Society, 2023
Keywords
debris remelting, melt penetration, Multiphase flow, porous media, wettability
National Category
Energy Engineering Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-353504 (URN)10.13182/NURETH20-40219 (DOI)2-s2.0-85202975288 (Scopus ID)
Conference
20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2023, Washington, United States of America, Aug 20 2023 - Aug 25 2023
Note

Part of ISBN 9780894487934

Available from: 2024-09-19 Created: 2024-09-19 Last updated: 2025-05-06Bibliographically approved

Open Access in DiVA

Kappa_Liang Chen(4359 kB)23 downloads
File information
File name FULLTEXT01.pdfFile size 4359 kBChecksum SHA-512
3d850a947a923187ed26235a55ccf5272de1d0ccaf6a988688911477538fa7ca725e849cfa2d8c419e5851baccef045cf3b9ffa3547bd12689fadb285518eead
Type fulltextMimetype application/pdf

Authority records

Chen, Liang

Search in DiVA

By author/editor
Chen, Liang
By organisation
Nuclear Science and Engineering
Metallurgy and Metallic MaterialsEnergy EngineeringFluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 23 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 994 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf