kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Operation and charging optimization for electric multimodal mobility system
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.ORCID iD: 0000-0001-6750-210x
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
Chair of Transportation Systems Engineering, Technical University of Munich (TUM), Germany.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.ORCID iD: 0000-0003-1514-6777
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This paper optimizes the vehicle operation and charging for integrated electric mobility-on-demand services and public transit in the multimodal mobility system. The advancement in automatic driving and electric vehicles introduces challenges in operating MoD services jointly with PT services. However, existing literature on optimizing multimodal mobility systems lacks (1) the energy capacity and en-route charging behavior of MoD services, and (2) the temporal dynamics. We propose an generic network flow model to optimize an electric multimodal mobility system by representing the temporal interactions among customers, electric MoD vehicles, and PT services. The model captures (1) the traveling, waiting, and inter-/intra-mode transfers of customers, (2) the routing, rebalancing, waiting, and charging of MoD vehicles, and (3) the schedules and routes of PT services. We perform a case study based on a real dataset from Färingsö island, Stockholm. We compare the existing PT services and the electric multimodal mobility system integrating MoD with PT. The results suggest the integration can overall reduce 11.35% average travel time and 1.90% average travel distance for customers. It also significantly decreases the average initial waiting time (44.59%), maximum travel time (50.00%), and average transfer time (38.20%) for customers. Moreover, the intermodal transfers mainly occur in one location on the island, indicating a minor modification of existing infrastructure for the challenging service coordination problem in the multimodal mobility systems.

Keywords [en]
Multimodal mobility system, Mobility-on-demand services, Public transit, Electric mobility
National Category
Transport Systems and Logistics
Research subject
Transport Science, Transport Systems
Identifiers
URN: urn:nbn:se:kth:diva-363186OAI: oai:DiVA.org:kth-363186DiVA, id: diva2:1956830
Note

QC 20250508

Available from: 2025-05-07 Created: 2025-05-07 Last updated: 2025-05-08Bibliographically approved
In thesis
1. Planning and Operation Optimization of Mobility-on-Demand Services in the Multimodal Mobility System
Open this publication in new window or tab >>Planning and Operation Optimization of Mobility-on-Demand Services in the Multimodal Mobility System
2025 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Multimodal mobility systems provide seamless service by integrating various travel modes like driving, cycling, Mobility-on-Demand (MoD) services, and Public Transit (PT) services. With the advancement in autonomous driving and electric vehicles, MoD services show their significant potential in coordinating with other travel modes, especially for PT services. To make the best use of its potential, it is essential to investigate the planning and operations of MoD and PT services in the multimodal mobility system.

In the multimodal mobility system, service operations on the supply side should focus on intermodal coordination. On the demand side, customers decide on routes and modes according to service levels such as travel time and price.However, research gaps exist in the planning and operations of integrated MoD and PT services. First, existing literature lacks in optimizing service operations that conform to customer behavior for multimodal mobility systems. Second, existing methods are not applicable to solve such an optimization problem with consistent 'expected' (from service operations) and 'actual' customer behavior. Third, there is a lack of operational optimization models with temporal dynamics for electric MoD vehicles integrated with PT service. To address the above issues, the included papers propose (1) service operation planning in multimodal mobility systems, (2) a generic mathematical solution algorithm for the choice-based optimization problem, and (3) electric MoD operation in multimodal mobility systems.

Paper I proposes a choice-based optimization model for planning MoD services in the multimodal system with the consideration of customer behavior. The optimization of service operations embeds the travelers' choices over modes and routes through a multinomial logit (MNL) model. An efficient linearization method is proposed for transformed MNL constraints to solve the choice-based optimization model. The case study and numerical experiments demonstrate the method's accuracy, efficiency, and advantages compared to existing methods. Paper II further extends the approach to propose the generic outer-inner approximation methods to solve the choice-based optimization problem, which is applicable to problems, such as, location planning, network expansion, and pricing.  

Paper III optimizes the integrated operations between MoD and PT services through a network flow model describing the interactions among customer flows, MoD vehicles, and PT services. It embeds the temporal dynamics and charging actions of MoD vehicles using the expanded network with each dimension representing a location, a moment, a state of charge, or a mode. The case study uses real data in Färingsö island, Stockholm. The results show that, compared to existing PT services, the integration of 10 MoD vehicles generally reduces 11.35% average travel time and 1.90% average travel distance. It also significantly (around 40%) reduces maximum travel time, average waiting time, average initial waiting time, and average/maximum transfer time for customers.  The intermodal transfers mainly happen in limited locations, suggesting that only minor modifications to the existing infrastructure are required for the integration.

Abstract [sv]

Multimodala transportsystem erbjuder sömlösa tjänster genom att integrera olika reseformer som bilkörning, cykling, Mobility-on-Demand (MoD)-tjänster och kollektivtrafik (PT). Med framstegen inom autonom körning och elfordon visar MoD-tjänster betydande potential för samordning med andra reseformer, särskilt kollektivtrafiken. För att utnyttja denna potential fullt ut är det nödvändigt att undersöka planering och drift av MoD och PT i ett multimodalt system.

I det multimodala transportsystemet bör serviceoperationer på utbudssidan fokusera på intermodell samordning. På efterfrågesidan väljer kunder rutter och färdmedel baserat på servicekvalitet såsom restid och pris. Dock existerar forskningsluckor i planering och drift av integrerade MoD- och PT-tjänster. Först och främst saknar befintlig litteratur optimering av serviceoperationer som anpassas till kundbeteende i multimodala system. För det andra är befintliga metoder inte lämpliga för att lösa optimeringsproblem som balanserar förväntat beteende (från serviceoperationer) och äkta kundbeteende. För det tredje saknas operativa optimeringsmodeller med tidsdynamik för elburna MoD-fordon integrerade med PT. För att adressera dessa problem presenterar artiklarna: (1) planering av serviceoperationer i multimodala system, (2) en generisk matematisk lösningsalgoritm för valbaserade optimeringsproblem, och (3) drift av elburna MoD-fordon i multimodala system.

Artikel I presenterar en valbaserad optimeringsmodell för MoD-planering i multimodala system med hänsyn till kundbeteende. Optimeringen integrerar resenärers val av färdmedel och rutter via en multinomial logit (MNL)-modell. En effektiv lineariseringsmetod för transformerade MNL-begränsningar föreslås för att lösa modellen. Fallstudier och numeriska experiment demonstrerar metodens precision, effektivitet och fördelar jämfört med befintliga metoder. Artikel II utvidgar tillvägagångssättet genom att föreslå generiska yttre-inre approximationsmetoder för att lösa valbaserade optimeringsproblem, tillämpbara på problem som lokaliseringsplanering, nätverksutbyggnad och prissättning.

Artikel III optimerar samverkan mellan MoD och PT genom en nätverksflödesmodell som beskriver interaktioner mellan kundflöden, MoD-fordon och PT. Modellen integrerar tidsdynamik och laddningsbeteende för MoD-fordon via ett expanderat nätverk där varje dimension representerar plats, tidpunkt, laddningstillstånd eller färdmedel. En fallstudie med verkliga data från Färingsö i Stockholm visar att integrering av 10 MoD-fordon generellt minskar genomsnittlig restid med 11,35% och reslängd med 1,90%. Dessutom minskar maximal restid, genomsnittlig väntetid, inledande väntetid samt genomsnittlig/maximal bytestid markant (40%). Intermodella byten äger huvudsakligen rum på begränsade platser, vilket indikerar att endast små infrastrukturanpassningar krävs för integrationen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 25
Series
TRITA-ABE-DLT ; 259
Keywords
Multimodal mobility systems, Mobility-on-demand services, Public transit, Choice-based optimization, Integrated operations, electric mobility, mathematical modeling, Multimodala transportsystem, Mobility-on-Demand-tjänster, Kollektivtrafik, Valbaserad optimering, Integrerade operationer, Elektromo-bilitet, Matematisk modellering
National Category
Transport Systems and Logistics
Research subject
Transport Science, Transport Systems
Identifiers
urn:nbn:se:kth:diva-363194 (URN)978-91-8106-292-2 (ISBN)
Presentation
2025-06-02, M108, Brinellvägen 23, KTH Campus, public video conference link https://kth-se.zoom.us/j/64248832324, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Region Stockholm, RS2022-0210
Note

QC 20250512

Available from: 2025-05-12 Created: 2025-05-07 Last updated: 2025-05-12Bibliographically approved

Open Access in DiVA

fulltext(2559 kB)21 downloads
File information
File name FULLTEXT01.pdfFile size 2559 kBChecksum SHA-512
1a41769c5a9837cfc6fd92cabf3745551ae7434dcdadef6236e5f884e9ea8e4bb28a7eb5b3d99d8d9f3c4392ddf666389890e148e67f263f4d8621b46cd18280
Type fulltextMimetype application/pdf

Authority records

Chen, HaoyeHerring-Calvo, GiancarloBurghout, WilcoMa, Zhenliang

Search in DiVA

By author/editor
Chen, HaoyeHerring-Calvo, GiancarloBurghout, WilcoMa, Zhenliang
By organisation
Transport planning
Transport Systems and Logistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 21 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 358 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf