Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Catalytic properties of Pd supported on ZnO/ZnAl2O4/Al2O3 mixtures in dimethyl ether autothermal reforming
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
2009 (English)In: Applied Catalysis B: Environmental, ISSN 0926-3373, E-ISSN 1873-3883, Vol. 86, 18-26 p.Article in journal (Refereed) Published
Abstract [en]

The catalytic properties of Pd supported on mixtures of zinc oxide, zinc aluminate, and alumina, prepared from gamma-alumina and zinc nitrate, were studied for autothermal reforming (ATR) of dimethyl ether (DME). The performance of the catalysts was tested in a small-scale reactor, using cordierite monoliths as substrate. The catalysts exhibited high activity and generated hydrogen-rich product gases with CO concentrations below 5 vol.% in the temperature range between 350 and 450 degrees C (at O-2:DME = 0.7, H2O:DME = 2.5, and GHSV = 15000 h(-1)). The highest DME conversion was obtained for a catalyst in which the support comprised mainly ZnAl2O4. Physical mixing of the catalysts with gamma-Al2O3 resulted in increased DME conversion but a lowering of the CO2 selectivity.The catalysts were characterized by CO chemisorption, liquid nitrogen adsorption, temperature-programmed desorption of ammonia, temperature-programmed reduction, transmission electron microscopy, and X-ray diffraction. It was found that decreasing surface area and decreasing number of acid sites, caused by thermal treatment during generation of the supports, did not affect the activity negatively. The high CO2 selectivity of the catalysts was correlated with PdZn alloy formation.

Place, publisher, year, edition, pages
2009. Vol. 86, 18-26 p.
Keyword [en]
Hydrogen; Dimethyl ether; Autothermal reforming; Pd catalyst; PdZn alloy
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-10023DOI: 10.1016/j.apcatb.2008.07.012ISI: 000262887700003Scopus ID: 2-s2.0-58049155416OAI: oai:DiVA.org:kth-10023DiVA: diva2:201360
Note
QC 20100804Available from: 2009-03-04 Created: 2009-03-04 Last updated: 2010-12-06Bibliographically approved
In thesis
1. Hydrogen Generation for Fuel Cells in Auxiliary Power Systems
Open this publication in new window or tab >>Hydrogen Generation for Fuel Cells in Auxiliary Power Systems
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Heavy-duty trucks are in idle operation during long periods of time, providing the vehicles with electricity via the alternator at standstill. Idling trucks contribute to large amounts of emissions and high fuel consumption as a result of the low efficiency from fuel to electricity. Auxiliary power units, which operate independently of the main engine, are promising alternatives for supplying trucks with electricity. Fuel cell-based auxiliary power units could offer high efficiencies and low noise. The hydrogen required for the fuel cell could be generated in an onboard fuel reformer using the existing truck fuel. The work presented in this thesis concerns hydrogen generation from transportation fuels by autothermal reforming focusing on the application of fuel cell auxiliary power units. Diesel and dimethyl ether have been the fuels of main focus. The work includes reactor design aspects, preparation and testing of reforming catalysts including characterization studies and evaluation of operating conditions. The thesis is a summary of five scientific papers.

Major issues for succeeding with diesel reforming are fuel injection, reactant mixing and achieving fuel cell quality reformate. The results obtained in this work contribute to the continued research and development of diesel reforming catalysts and processes. A diesel reformer, designed to generate hydrogen to feed a 5 kWe polymer electrolyte fuel cell has been evaluated for autothermal reforming of commercial diesel fuel. The operational results show the feasibility of the design to generate hydrogen-rich gases from complex diesel fuel mixtures and have, together with CFD calculations, been supportive in the development of a new improved reformer design. In addition to diesel, the reforming reactor design was shown to run satisfactorily with other hydrocarbon mixtures, such as gasoline and E85. Rh-based catalysts were used in the studies and exhibit high performance during diesel reforming without coke formation on the catalyst surface. An interesting finding is that the addition of Mn to Rh catalysts appears to improve activity during diesel reforming. Therefore, Mn could be considered to be used to decrease the noble metal loading, and thereby the cost, of diesel reforming catalysts.

Dimethyl ether is a potential diesel fuel alternative and has lately been considered as hydrogen carrier for fuel cells in truck auxiliary power units. The studies related to dimethyl ether have been focused on the evaluation of Pd-based catalysts and the influence of operating parameters for autothermal reforming. PdZn-based catalysts were found to be very promising for DME reforming, generating product gases with high selectivity to hydrogen and carbon dioxide. The high product selectivity is correlated to PdZn interactions, leading to decreased activity of decomposition reactions. Auxiliary power systems fueled with DME could, therefore, make possible fuel processors with very low complexity compared to diesel-fueled systems.

The work presented in this thesis has enhanced our understanding of diesel and DME reforming and will serve as basis for future studies.

 

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. viii, 76 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2009:7
Keyword
autothermal reforming, auxiliary power unit, diesel, dimethyl ether, fuel cell, fuel-flexible reformer, hydrogen, PdZn alloy, reforming catalyst, reformer design, Rh
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-10024 (URN)978-91-7415-245-6 (ISBN)
Public defence
2009-03-27, F3, KTH, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20100804Available from: 2009-03-12 Created: 2009-03-04 Last updated: 2010-08-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TF6-4T1940C-7&_user=4478132&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000034958&_version=1&_urlVersion=0&_userid=4478132&md5=cae856d49cc4572a317049a26b17353d

Search in DiVA

By author/editor
Nilsson, MaritaPettersson, Lars J.
By organisation
Chemical Engineering and Technology
In the same journal
Applied Catalysis B: Environmental
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 118 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf