Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Computing return loss for arbitrary scan directions using limited scan codes for infinite phase arrays
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
2009 (English)In: Electronics Letters, ISSN 0013-5194, E-ISSN 1350-911X, Vol. 45, no 13, 660-662 p.Article in journal (Refereed) Published
Abstract [en]

Analyzing large phased array antennas using time domain codes is favourable when looking into wideband solutions. This is often done by assuming an infinite array, i.e. a unit cell approach is used. Unfortunately, unit cell based time domain codes using time shifts between cell boundaries have a disadvantage of only being able of analyzing phase shifts corresponding to a beam scanned in the visible space. However, in order to fully characterize the infinite array antenna it is sometimes necessary to compute the active reflection coefficient also for scan directions/phase shifts corresponding to invisible space. Presented in this letter is a new approach on how to do this in a simple manner using unit cell based time domain codes. By extending the size of the computational domain, and include more than one element, phase shifts corresponding to invisible space are included.

Place, publisher, year, edition, pages
2009. Vol. 45, no 13, 660-662 p.
Keyword [en]
PERIODIC BOUNDARY-CONDITIONS
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-10223DOI: 10.1049/el.2009.0272ISI: 000267820600002Scopus ID: 2-s2.0-67650085552OAI: oai:DiVA.org:kth-10223DiVA: diva2:211537
Note
QC 20100712Available from: 2009-04-16 Created: 2009-04-16 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Wide-angle scanning wide-band phased array antennas
Open this publication in new window or tab >>Wide-angle scanning wide-band phased array antennas
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis considers problems related to the design and the analysis of wide-angle scanning phased arrays. The goals of the thesis are the design and analysis of antenna elements suitable for wide-angle scanning array antennas, and the study of scan blindness effects and edge effects for this type of antennas. Wide-angle scanning arrays are useful in radar applications, and the designs considered in the thesis are intended for an airborne radar antenna.After a study of the wide-angle scanning limits of three candidate elements, the tapered-slot was chosen for the proposed application.A tapered-slot antenna element was designed by using the infinitive array approach and the resulting element is capable of scanning out to 60° from broadside in all scan planes for a bandwidth of 2.5:1 and an active reflection coefficient less than -10 dB. This design was implemented on an experimental antenna consisting of 256 elements.The predicted performance of the antenna was then verified by measuring the coupling coefficients and the embedded element patterns, and the measurements agreed well with the numerical predictions.Since the radar antenna is intended for applications where stealth is important, an absorbing layer is positioned on top of the ground plane to reduce the radar cross section for the antenna's cross-polarization.This absorbing layer attenuates guided waves that otherwise lead to scan blindness, but does not adversely affect the antenna performance for the desired scan directions and frequencies.The highest frequency limit of the tapered-slot element is set by scan blindnesses. One of these scan blindnesses is found to be unique to tapered-slot elements positioned in triangular grids. This scan blindness is studied in detail and a scan blindness condition is presented and evaluated.The evaluation of the experimental antenna shows that edge effects reduce the H-plane performance of the central elements.These edge effects are further studied and characterized, by comparing the scattering parameters for finite-by-infinite arrays and infinite arrays.In this way it is possible to divide the edge effects into two categories: those caused by finite excitation, and those caused by perturbed currents due to the geometry of the edge. A finite difference time domain code with time shift boundaries is used to compute the active reflection coefficients needed to compute the scattering parameters, but this code cannot directly compute the active reflection coefficient for all the required phase shifts.Hence, an additional method is presented that makes it possible to compute arbitrary phase shifts between the elements using any numerical code with limited scan directions.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. viii, 62 p.
Series
Trita-EE, ISSN 1653-5146 ; 2009:017
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-10225 (URN)978-91-7415-291-3 (ISBN)
Public defence
2009-05-08, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
QC 20100712Available from: 2009-05-07 Created: 2009-04-16 Last updated: 2010-07-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ellgardt, Anders
By organisation
Electromagnetic Engineering
In the same journal
Electronics Letters
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 67 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf