CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Topological CombinatoricsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2009 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH , 2009. , vii, 16 p.
##### Series

Trita-MAT. MA, ISSN 1401-2278
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-10383ISBN: 978-91-7415-256-2 (print)OAI: oai:DiVA.org:kth-10383DiVA: diva2:216411
##### Public defence

2009-05-08, Sal E2, KTH, Lindstedtsvägen 5, Stockholm, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
##### Note

QC 20100712Available from: 2009-05-08 Created: 2009-05-08 Last updated: 2010-07-12Bibliographically approved
##### List of papers

This thesis on Topological Combinatorics contains 7 papers. All of them but paper Bare published before.In paper A we prove that!i dim ˜Hi(Ind(G);Q) ! |Ind(G[D])| for any graph G andits independence complex Ind(G), under the condition that G\D is a forest. We then use acorrespondence between the ground states with i+1 fermions of a supersymmetric latticemodel on G and ˜Hi(Ind(G);Q) to deal with some questions from theoretical physics.In paper B we generalize the topological Tverberg theorem. Call a graph on the samevertex set as a (d + 1)(q − 1)-simplex a (d, q)-Tverberg graph if for any map from thesimplex to Rd there are disjoint faces F1, F2, . . . , Fq whose images intersect and no twoadjacent vertices of the graph are in the same face. We prove that if d # 1, q # 2 is aprime power, and G is a graph on (d+1)(q −1)+1 vertices such that its maximal degreeD satisfy D(D + 1) < q, then G is a (d, q)–Tverberg graph. It was earlier known that thedisjoint unions of small complete graphs, paths, and cycles are Tverberg graphs.In paper C we study the connectivity of independence complexes. If G is a graphon n vertices with maximal degree d, then it is known that its independence complex is(cn/d + !)–connected with c = 1/2. We prove that if G is claw-free then c # 2/3.In paper D we study when complexes of directed trees are shellable and how one canglue together independence complexes for finding their homotopy type.In paper E we prove a conjecture by Björner arising in the study of simplicial polytopes.The face vector and the g–vector are related by a linear transformation. We prove thatthis matrix is totaly nonnegative. This is joint work with Michael Björklund.In paper F we introduce a generalization of Hom–complexes, called set partition complexes,and prove a connectivity theorem for them. This generalizes previous results ofBabson, Cukic, and Kozlov, and questions from Ramsey theory can be described with it.In paper G we use combinatorial topology to prove algebraic properties of edge ideals.The edge ideal of G is the Stanley-Reisner ideal of the independence complex of G. Thisis joint work with Anton Dochtermann.

1. Upper bounds on the Witten index for supersymmetric lattice models by discrete Morse theory$(function(){PrimeFaces.cw("OverlayPanel","overlay216347",{id:"formSmash:j_idt482:0:j_idt486",widgetVar:"overlay216347",target:"formSmash:j_idt482:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Tverberg graphs$(function(){PrimeFaces.cw("OverlayPanel","overlay216349",{id:"formSmash:j_idt482:1:j_idt486",widgetVar:"overlay216349",target:"formSmash:j_idt482:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Independence complexes of claw-free graphs$(function(){PrimeFaces.cw("OverlayPanel","overlay216351",{id:"formSmash:j_idt482:2:j_idt486",widgetVar:"overlay216351",target:"formSmash:j_idt482:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Complexes of directed trees and independence complexes$(function(){PrimeFaces.cw("OverlayPanel","overlay216353",{id:"formSmash:j_idt482:3:j_idt486",widgetVar:"overlay216353",target:"formSmash:j_idt482:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. The *g*-theorem matrices are totally nonnegative$(function(){PrimeFaces.cw("OverlayPanel","overlay216356",{id:"formSmash:j_idt482:4:j_idt486",widgetVar:"overlay216356",target:"formSmash:j_idt482:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. Set Partition Complexes$(function(){PrimeFaces.cw("OverlayPanel","overlay216358",{id:"formSmash:j_idt482:5:j_idt486",widgetVar:"overlay216358",target:"formSmash:j_idt482:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

7. Algebraic properties of edge ideals via combinatorial topology$(function(){PrimeFaces.cw("OverlayPanel","overlay216360",{id:"formSmash:j_idt482:6:j_idt486",widgetVar:"overlay216360",target:"formSmash:j_idt482:6:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1144",{id:"formSmash:j_idt1144",widgetVar:"widget_formSmash_j_idt1144",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1197",{id:"formSmash:lower:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1198_j_idt1200",{id:"formSmash:lower:j_idt1198:j_idt1200",widgetVar:"widget_formSmash_lower_j_idt1198_j_idt1200",target:"formSmash:lower:j_idt1198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});