Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Highly efficient Organic Sensitizers for Solid State Dye Sensitized Solar Cells
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. (Licheng Sun)
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.ORCID iD: 0000-0002-4521-2870
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.ORCID iD: 0000-0003-1771-9401
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
Show others and affiliations
2009 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 38, 16816-16820 p.Article in journal (Refereed) Published
Abstract [en]

Organic sensitizers comprising of donor, electron-conducting, and anchoring groups designed and developed for dye-sensitized solar cell applications. The solar cell employing a spiro-OMeTAD hole transporting material exhibits a short circuit photocurrent density of 9.64 mA/cm2, the open circuit voltage of 798 mV and a fill factor of 0.57, corresponding to an overall conversion efficiency of 4.4% at standard AM 1.5 sunlight. Photo-induced absorption spectroscopy probes an efficient hole-transfer from dyes to the spiro-OMeTAD.

Place, publisher, year, edition, pages
2009. Vol. 113, no 38, 16816-16820 p.
Keyword [en]
PHOTOINDUCED ABSORPTION-SPECTROSCOPY; TIO2; CONVERSION
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-10545DOI: 10.1021/jp9033722ISI: 000269745700037Scopus ID: 2-s2.0-70349880505OAI: oai:DiVA.org:kth-10545DiVA: diva2:219035
Note
Uppdaterad från manuskrift 20100716 QC 20100716Available from: 2009-05-26 Created: 2009-05-26 Last updated: 2011-05-05Bibliographically approved
In thesis
1. Synthesis of Organic Chromophores for Dye Sensitized Solar Cells.
Open this publication in new window or tab >>Synthesis of Organic Chromophores for Dye Sensitized Solar Cells.
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

 

This thesis deals with development and synthesis of organic chromophores for dye sensitized solar cells. The chromophores are divided into three components; donor, linker and acceptor.

The development of efficient organic chromophores for dye sensitized solar cells starts off with one new organic chromophore, D5. This chromophore consists of a triphenylamine moiety as an electron donor, a conjugated linker with a thiophene moiety and cyanoacrylic acid as an electron acceptor and anchoring group. Alternating the donor, linker or acceptor moieties independently, would give us the tool to tune the HOMO and LUMO energy levels of the chromophores. The following parts of this thesis regard this development strategy.

The contributions to the HOMO and LUMO energy levels were investigated when alternating the linker moiety. Unexpected effects of the solar cell performances when increasing the linker length were revealed, however.

In addition, the effect of an alternative acceptor group, rhodanine-3-acetic acid, in combination with different linker lengths was investigated. The HOMO and LUMO energy level tuning was once again successful. Electron recombination from the semiconductor to the electrolyte is probably the cause of the poor efficiencies obtained for this series of dyes.

Finally, the development of functionalized triphenylamine based donors and the contributions from different substituents to the HOMO and LUMO energy levels and as insulating layers were investigated. This strategy has so far been the most successful in terms of reaching high efficiencies in the solar cell. A top overall efficiency of 7.79 % was achieved.

 

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. 73 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2009:18
Keyword
Acceptor, chromophore, donor, dye sensitized solar cells, HOMO and LUMO energy level tuning, linker, organic dye.
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-10547 (URN)978-91-7415-328-6 (ISBN)
Public defence
2009-08-28, F3, KTH, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20100716Available from: 2009-06-12 Created: 2009-05-26 Last updated: 2010-07-16Bibliographically approved
2. Design, Synthesis and Properties of Organic Sensitizers for Dye Sensitized Solar Cells
Open this publication in new window or tab >>Design, Synthesis and Properties of Organic Sensitizers for Dye Sensitized Solar Cells
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis gives a detailed description of the design and synthesis of new organic sensitizers for Dye sensitized Solar Cells (DSCs). It is divided in 7 chapters, where the first gives an introduction to the field of DSCs and the synthesis of organic sensitizers. Chapters 2 to 6 deal with the work of the author, starting with the first publication and the other following in chronological order. The thesis is completed with some concluding remarks (chapter 7).

The DSC is a fairly new solar cell concept, also known as the Grätzel cell, after its inventor Michael Grätzel. It uses a dye (sensitizer) to capture the incident light. The dye is chemically connected to a porous layer of a wide band-gap semiconductor. The separation of light absorption and charge separation is different from the conventional Si-based solar cells. Therefore, it does not require the very high purity materials necessary for the Si-solar cells. This opens up the possibility of easier manufacturing for future large scale production. Since the groundbreaking work reported in 1991, the interest within the field has grown rapidly. Large companies have taken up their own research and new companies have started with their focus on the DSC. So far the highest solar energy to electricity conversion efficiencies have reached ~12%.

The sensitizers in this thesis are based on triphenylamine or phenoxazine as the electron donating part in the molecule. A conjugated linker allows the electrons to flow from the donor to the acceptor, which will enable the electrons to inject into the semiconductor once they are excited. Changing the structure by introducing substituents, extending the conjugation and exchanging parts of the molecule, will influence the performance of the solar cell. By analyzing the performance, one can evaluate the importance of each component in the structure and thereby gain more insight into the complex nature of the dye sensitized solar cell.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. 80 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2011:31
Keyword
Acceptor, chromophore, donor, dye, sensitized, energy level, HOMO/LUMO, linker, phenoxazine, sensitizer, solar cell, triphenylamine
National Category
Chemical Sciences Organic Chemistry
Identifiers
urn:nbn:se:kth:diva-33190 (URN)978-91-7415-954-7 (ISBN)
Public defence
2011-05-20, K2, Teknikringen 28, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20110505Available from: 2011-05-05 Created: 2011-04-29 Last updated: 2011-09-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Sun, LichengKarlsson, Karl Martin

Search in DiVA

By author/editor
Hagberg, DanielSun, LichengKarlsson, Karl MartinMarinado, TanniaHagfeldt, Anders
By organisation
Organic ChemistryPhysical Chemistry
In the same journal
The Journal of Physical Chemistry C
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 162 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf