CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Moduli spaces of zero-dimensional geometric objectsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2009 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH , 2009. , vii, 10 p.
##### Series

Trita-MAT. MA, ISSN 1401-2278 ; 09:09
##### Keyword [en]

Algebraic geometry, Commutative algebra, Moduli spaces
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-10662ISBN: 978-91-7415-379-8 (print)OAI: oai:DiVA.org:kth-10662DiVA: diva2:223079
##### Public defence

2009-08-17, Sydvästra Galleriet, KTH Biblioteket, Osquars backe 31, Stockholm, Stockholm, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
##### Note

QC 20100729Available from: 2009-06-12 Created: 2009-06-10 Last updated: 2010-07-29Bibliographically approved
##### List of papers

The topic of this thesis is the study of moduli spaces of zero-dimensional geometricobjects. The thesis consists of three articles each focusing on a particular moduli space.The first article concerns the *Hilbert scheme* Hilb(X). This moduli space parametrizesclosed subschemes of a fixed ambient scheme X. It has been known implicitly for sometime that the Hilbert scheme does not behave well when the scheme X is not separated.The article shows that the separation hypothesis is necessary in the sense thatthe component Hilb1(X) of Hilb(X) parametrizing subschemes of dimension zero andlength 1 does not exist if X is not separated.Article number two deals with the *Chow scheme* Chow 0,n(X) parametrizing zerodimensionaleffective cycles of length* n* on the given scheme X. There is a relatedconstruction, the *Symmetric product* Symn(X), defined as the quotient of the n-foldproduct X ×. . .×X of X by the natural action of the symmetric group Sn permutingthe factors. There is a canonical map Symn(X) " Chow0,n(X) that, set-theoretically,maps a tuple (x1, . . . , xn) to the cycle!nk=1 xk. In many cases this canonical map is anisomorphism. We explore in this paper some examples where it is not an isomorphism.This will also lead to some results concerning the question whether the symmetricproduct commutes with base change.The third article is related to the *Fulton-MacPherson compactification *of the configurationspace of points. Here we begin by considering the configuration space F(X, n)parametrizing n-tuples of distinct ordered points on a smooth scheme X. The schemeF(X, n) has a compactification X[n] which is obtained from the product Xn by a sequenceof blowups. Thus X[n] is itself not defined as a moduli space, but the pointson the boundary of X[n] may be interpreted as geometric objects called stable degenerations.It is then natural to ask if X[n] can be defined as a moduli space of *stabledegenerations* instead of as a blowup. In the third article we begin work towards ananswer to this question in the case where X = P2. We define a very general modulistack Xpv2 parametrizing projective schemes whose structure sheaf has vanishing secondcohomology. We then use Artin’s criteria to show that this stack is algebraic. Onemay define a stack SDX,n of stable degenerations of X and the goal is then to provealgebraicity of the stack SDX,n by using Xpv2.

1. Non-effective deformations of Grothendieck’s Hilbertfunctor$(function(){PrimeFaces.cw("OverlayPanel","overlay223370",{id:"formSmash:j_idt482:0:j_idt486",widgetVar:"overlay223370",target:"formSmash:j_idt482:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Counterexamples regarding symmetric tensors and divided powers$(function(){PrimeFaces.cw("OverlayPanel","overlay223372",{id:"formSmash:j_idt482:1:j_idt486",widgetVar:"overlay223372",target:"formSmash:j_idt482:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. The stack of projective schemes with vanishing second cohomology$(function(){PrimeFaces.cw("OverlayPanel","overlay223374",{id:"formSmash:j_idt482:2:j_idt486",widgetVar:"overlay223374",target:"formSmash:j_idt482:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1144",{id:"formSmash:j_idt1144",widgetVar:"widget_formSmash_j_idt1144",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1197",{id:"formSmash:lower:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1198_j_idt1200",{id:"formSmash:lower:j_idt1198:j_idt1200",widgetVar:"widget_formSmash_lower_j_idt1198_j_idt1200",target:"formSmash:lower:j_idt1198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});