Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Temperature regulation during ultrasonic manipulation for long-term cell handling in a microfluidic chip
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics. (Biomedical & X-Ray Physics)
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics. (Biomedical & X-Ray Physics)ORCID iD: 0000-0002-4720-2756
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics. (Biomedical & X-Ray Physics)
2007 (English)In: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 17, 2469-2474 p.Article in journal (Refereed) Published
Abstract [en]

Regulation by the use of ultrasonic standing wave technology in a microfluidic chip. The system is based on a microfabricated silicon structure sandwiched between two glass layers, and an external ultrasonic transducer using a refractive wedge placed on top of the chip for efficient coupling of ultrasound into the microchannel. The chip is fully transparent and compatible with any kind of high-resolution optical microscopy. The temperature regulation method uses calibration data of the temperature increase due to the ultrasonic actuation for determining the temperature of the surrounding air and microscope table, controlled by a warm-air heating unit and a heatable mounting frame. The heating methods are independent of each other, resulting in a flexible choice of ultrasonic actuation voltage and flow rate for different cell and particle manipulation purposes. Our results indicate that it is possible to perform stable temperature regulation with an accuracy of the order of +/- 0.1 degrees C around any physiologically relevant temperature (e.g., 37 degrees C) with high temporal stability and repeatability. The purpose is to use ultrasound for long-term cell and/or particle handling in a microfluidic chip while controlling and maintaining the biocompatibility of the system.

Place, publisher, year, edition, pages
2007. Vol. 17, 2469-2474 p.
Keyword [en]
technology; retention
National Category
Industrial Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-10914DOI: 10.1088/0960-1317/17/12/012ISI: 000251767100012Scopus ID: 2-s2.0-36949032927OAI: oai:DiVA.org:kth-10914DiVA: diva2:231809
Note
QC 20100730Available from: 2009-08-18 Created: 2009-08-18 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Multidimensional Ultrasonic Standing Wave Manipulation in Microfluidic Chips
Open this publication in new window or tab >>Multidimensional Ultrasonic Standing Wave Manipulation in Microfluidic Chips
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The use of ultrasonic standing waves for contactless manipulation of microparticles in microfluidic systems is a field with potential to become a new standard tool in lab-on-chip systems. Compared to other contactless manipulation methods ultrasonic standing wave manipulation shows promises of gentle cell handling, low cost, and precise temperature control. The technology can be used both for batch handling, such as sorting and aggregation, and handling of single particles.

This doctoral Thesis presents multi-dimensional ultrasonic manipulation, i.e., manipulation in both two and three spatial dimensions as well as time-dependent manipulation of living cells and microbeads in microfluidic systems. The lab-on-chip structures used allow for high-quality optical microscopy, which is central to many bio-applications. It is demonstrated how the ultrasonic force fields can be spatially confined to predefined regions in the system, enabling sequential manipulation functions. Furthermore, it is shown how frequency-modulated signals can be used both for spatial stabilization of the force fields as well as for flow-free transport of particles in a microchannel. Design parameters of the chip-transducer systems employed are investigated experimentally as well as by numerical simulations. It is shown that three-dimensional resonances in the solid structure of the chip strongly influences the resonance shaping in the channel.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. ix, 83 p.
Series
Trita-FYS, ISSN 0280-316X ; 2009:44
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-10919 (URN)978-91-7415-398-9 (ISBN)
Public defence
2009-09-11, FD5, Roslagstullsbacken 21, Stockholm, 14:00 (English)
Opponent
Supervisors
Note
QC 20100730Available from: 2009-09-01 Created: 2009-08-18 Last updated: 2010-07-30Bibliographically approved
2. Ultrasonic Handling of Living Cells in Microfluidic Systems
Open this publication in new window or tab >>Ultrasonic Handling of Living Cells in Microfluidic Systems
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Microfluidic chips have become a powerful tool in research where biological cells are processed and/or analyzed. One method for contactless cell manipulation in microfluidic chips that has gained an increasing amount of attention the last decade is ultrasonic standing wave (USW) technology. This Thesis explores the biocompatibility of USW technology applied to microfluidic chips, and presents a novel USW-based method for serial processing and accurate characterization of living cells.

The biocompatibility has been investigated by measuring the proliferation rate of cells after they had been trapped and aggregated inside a chip by ultrasound. No negative influence was observed after continuous exposure to 0.85 MPa pressure amplitudes for up to 75 min. Furthermore, the heat generation in the fluid channel caused by the ultrasound has been measured and used in a regulation scheme where the temperature can be controlled around any relevant temperature (e.g. 37‰) with ±0.1‰ accuracy for more than 12 hours. The proliferation rate and temperature investigations suggest that USW technology applied to microfluidic chips is a biocompatiblemethod useful for long-term handling of living cells.

We have introduced a new concept of contactless ultrasonic ”caging” of single cells or small aggregates of cells. These cages are channel segments in the microfluidic chips that are geometrically designed to resonate at one or several actuation frequencies. The actuation is performed remotely by up to five external frequency specific wedge transducers, where each transducer produces a localized and spatially confined standing wave with a specific orientation of its corresponding radiation force field. By multi-frequency actuation, sophisticated and flexible force fields are realized by both overlapping and separated single fields. The Thesis describes two different cages: A sub-mm ”micro-cage” for tree-dimensional manipulationof single cells, and a 5-mm ”mini-cage” for selective retention of small cell aggregates (up to approx. 10^3 cells) from a continuously feeding sample flow. Finally,our microfluidic chips were also designed to be compatible with high-resolution optical microscopy. We have demonstrated sub-μm-resolution confocal fluorescence and trans-illumination microscopy imaging of ultrasonically caged living cells.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. xi, 53 p.
Series
Trita-FYS, ISSN 0280-316X ; 2009:56
National Category
Industrial Biotechnology
Identifiers
urn:nbn:se:kth:diva-11500 (URN)978-91-7415-466-5 (ISBN)
Public defence
2009-11-27, FB42, Roslagstullsbacken 21, AlbaNova Universitetscentrum, Kungliga Tekniska Högskolan., Stockholm., 10:00 (English)
Opponent
Supervisors
Note
QC 20100811Available from: 2009-11-17 Created: 2009-11-17 Last updated: 2011-10-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://www.iop.org/EJ/abstract/0960-1317/17/12/012/

Authority records BETA

Manneberg, Otto

Search in DiVA

By author/editor
Svennebring, JessicaManneberg, OttoWiklund, Martin
By organisation
Biomedical and X-ray Physics
In the same journal
Journal of Micromechanics and Microengineering
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf