Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
SearchFill: A stochastic optimization code for detecting atomic vacancies in crystalline and non-crystalline systems
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.ORCID iD: 0000-0001-7531-3210
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
2011 (English)In: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 182, no 5, 1105-1110 p.Article in journal (Refereed) Published
Abstract [en]

We present an implementation of a stochastic optimization algorithm applied to location of atomic vacancies. Our method labels an empty point in space as a vacancy site, if the total spatial overlap of a "virtual sphere", centered around the point, with the surrounding atoms (and other vacancies) falls below a tolerance parameter. A Metropolis-like algorithm displaces the vacancies randomly, using an "overlap temperature" parameter to allow for acceptance of moves into regions with higher overlap, thus avoiding local minima. Once the algorithm has targeted a point with low overlap, the overlap temperature is decreased, and the method works as a steepest descent optimization.

Our method, with only two free parameters, is able to detect the correct number and coordinates of vacancies in a wide spectrum of condensed-matter systems, from crystals to amorphous solids, in fact in any given set of atomic coordinates, without any need of comparison with a reference initial structure.

Place, publisher, year, edition, pages
2011. Vol. 182, no 5, 1105-1110 p.
Keyword [en]
Monte Carlo, Vacancies, Interstitials, Computer simulation, Numerical optimization
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-11025DOI: 10.1016/j.cpc.2010.12.009ISI: 000288926100001Scopus ID: 2-s2.0-79952002697OAI: oai:DiVA.org:kth-11025DiVA: diva2:234453
Funder
Swedish Research Council
Note
QC 20100708 Uppdaterad från manuskript till artikel i tidskrift (20110419)Available from: 2009-09-16 Created: 2009-09-08 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Atomistic Computer Simulations of Melting, Diffusion and Thermal Defects in High Pressure Solids
Open this publication in new window or tab >>Atomistic Computer Simulations of Melting, Diffusion and Thermal Defects in High Pressure Solids
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The present work describes the use of atomistic computer simulations in the area of Condensed Matter Physics, and speci cally its application to the study of two problems: the dynamics of the melting phase transition and the properties of materials at extremely high pressures and temperatures, problems which defy experimental measurements and purely analytical calculations.

A good sampling of techniques including classical and rst-principles Molecular Dynamics, and Metropolis Monte Carlo simulation have been applied in this study. It includes the calculation of melting curves for a wide range of pressures for elements such as Xe and H2, the comparison of two di erent models for molecular interactions in ZrO2 with respect to their ability to reproduce the melting point of the stable cubic phase, the study of the elastic constants of Fe at the extreme conditions of the Earth's inner core, and the stability of its crystalline phases. One of the most interesting results in this work is the characterization of di usion and defects formation in generic models of crystalline solids (namely Lennard-Jones and Embedded-atom) at the limit of superheating, including the role they play in the triggering of the melting process itself.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. 82 p.
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-11027 (URN)978-91-7415-407-8 (ISBN)
Public defence
2009-09-18, F3, Lindstedstvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20100708Available from: 2009-09-10 Created: 2009-09-08 Last updated: 2011-04-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Belonoshko, Anatoly

Search in DiVA

By author/editor
Davis, SergioBelonoshko, AnatolyJohansson, Börje
By organisation
Applied Material Physics
In the same journal
Computer Physics Communications
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 99 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf