Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Topographic Control of Groundwater Flow
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering. (River Engineering)
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Gravity is the main driving force for groundwater flow, and both landscape topography and geology distribute the effects of gravity on groundwater flow.  The groundwater table defines the distribution of the potential energy of the water. In humid regions where the bedrock permeability is relatively low and the soil depth is sufficiently shallow, the groundwater table closely follows the landscape topography and, thus, the topography controls the groundwater circulation in these regions. In this thesis, I investigate multi-scale topography-controlled groundwater flow, with the goal of systematizing the spatial distribution of groundwater flow and assessing geological parameters of importance for groundwater circulation.  Both exact solutions and numerical models are utilized for analyzing topography-controlled groundwater flow. The more complex numerical models are used to explore the importance of various simplifications of the exact solutions. The exact solutions are based on spectral representation of the topography and superpositioning of unit solutions to the groundwater flow field. This approach is an efficient way to analyze multi-scaled topography-controlled groundwater flow because the impact of individual topographic scales on the groundwater flow can be analyzed separately.  The results presented here indicate that topography is fractal and affects groundwater flow cells at wide range of spatial scales. We show that the fractal nature of the land surface produces fractal distributions of the subsurface flow patterns. This underlying similarity in hydrological processes also yields a single scale-independent distribution of subsurface water residence times which have been found in distributions of solute efflux from watersheds. Geological trends modify the topographic control of the groundwater circulation pattern and this thesis presents exact solutions explaining the impact of geological layering, depth-decaying and anisotropic hydraulic conductivity on the groundwater flow field. For instance, layers of Quaternary deposits and decaying permeability with depth both increase the importance of smaller topographic scales and creates groundwater flow fields where a larger portion of the water occupies smaller and shallower circulation cells, in comparison to homogeneous systems.

Abstract [sv]

Gravitationen är den mest betydelsefulla drivkraften för grundvattenströmning. Topografin och geologin fördelar vattnets potentiella energi i landskapet. Grundvattenytans läge definierar vattnets potentiella energi, vilket är ett randvillkor för grundvattnets strömningsfält. I humida områden med en relativt tät berggrund och tillräckligt tunna jordlager, följer grundvattenytan landskapets topografi. Därav följer att grundvattenströmningen är styrd av topografin i dessa områden. I denna avhandling belyser jag den flerskaliga topografistyrda grundvattenströmningen. Min målsättning har varit att kvantitativt bestämma grundvattenströmningens rumsliga fördelning samt att undersöka hur olika geologiska parametrar påverkar grundvattencirkulationen. Jag har använt såväl numeriska modeller som analytiska lösningar, för att undersöka hur topografin styr grundvattenströmningen. De numeriska modellerna är mer komplexa än de analytiska lösningarna och kan därför användas för att undersöka betydelserna av olika förenklingar som finns i de analytiska lösningarna. De analytiska lösningarna är baserade på spektralanalys av topografin, samt superponering av enhetslösningar, där varje enhetslösning beskriver hur en specifik topografisk skala påverkar grundvattnets strömningsfält. Detta är ett effektivt tillvägagångssätt för att undersöka flerskaliga effekter av topografin, eftersom påverkan av varje enskild topografisk skala kan studeras separat. Resultaten som presenteras indikerar att topografin är fraktal och att den ger upphov till cirkulationsceller av varierande storlek som även dessa är av en fraktal natur. Denna grundläggande fördelning i grundvattnets strömningsfält ger upphov till att grundvattnets uppehållstid i marken följer ett självlikformigt mönster och kan förklara uppmätta tidsvariationer av lösta ämnens koncentrationer i vattendrag efter regn. Geologiska trender påverkar hur grundvattenströmningen styrs av topografin. De exakta lösningar som presenteras här, beskriver hur geologiska lager samt djupavtagande och anisotropisk hydraulisk konduktivitet påvekar grundvattnets strömning. Exempelvis är betydelsen av mindre topografiska skalor viktigare i områden med kvartära avlagringar och en berggrund med djupavtagande konduktivitet, än i områden med homogen bergrund utan kvartära avlagringar. Dessutom är en större andel strömmande vatten belägen närmare markytan i de förstnämnda områdena.

Place, publisher, year, edition, pages
Stockholm: KTH , 2009. , xiv, 44 p.
Series
Trita-LWR. PHD, ISSN 1650-8602 ; 1052
Keyword [en]
Groundwater, Modeling, Topography, Spectral analysis, Fourier series, Exact solu-tions, Multi-scale
Keyword [sv]
Grundvatten, Modellering, Topografi, Spektralanalys, Fourier serier, Analytisk lösning, Flerskalig
National Category
Oceanography, Hydrology, Water Resources Other Environmental Engineering
Identifiers
URN: urn:nbn:se:kth:diva-11153ISBN: 978-91-7415-377-4 (print)OAI: oai:DiVA.org:kth-11153DiVA: diva2:236434
Public defence
2009-10-14, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20100802Available from: 2009-09-25 Created: 2009-09-23 Last updated: 2010-08-02Bibliographically approved
List of papers
1. Impact of landscape topography and quaternary overburden on the performance of a geological repository of nuclear waste
Open this publication in new window or tab >>Impact of landscape topography and quaternary overburden on the performance of a geological repository of nuclear waste
2008 (English)In: Nuclear Technology, ISSN 0029-5450, Vol. 163, 165-179 p.Article in journal (Refereed) Published
Abstract [en]

The topographical driving forces for groundwater on different spatial scales in several ways influence the performance of a repository for nuclear waste located at large depth in crystalline bedrock. We show that the relation between local topographical characteristics (topographical steepness and wavelengths) in the area of a repository (kilometer scale) and the large-scale (hundreds of kilometers) surroundings, together with repository depth, are the primary controls of residence time distributions and the discharge pattern of radionuclides released from an underground repository. In addition, the topography affects the groundwater flow at repository depth and, therefore, influences the long-time degradation of the repository. In the areas studied, all located in Sweden, the local topography mainly controls the groundwater flow down to a depth of ∼500 m, which is the suggested depth of the Swedish repository. The importance of the large-scale topography increases with depth but even at depth where local-scale topography is dominant, the continental-scale topography affects length and depth of flow paths as well as groundwater velocities. The impact of large-scale topography is particularly clear in areas where the steepness of local-scale landforms is relatively small. The study also shows that quaternary deposits (bedrock overburden) may have a significant impact on the overall residence times in the underground because of their hydraulic and sorption properties. This effect is fiirther enhanced by the fact that flow paths originating from repository depth generally emerge in topographical lows with relatively deep layers of quaternary deposits. The findings of this study underscore the need to consider multiscale topographical characteristics as well as bedrock overburden in assessments of radiological consequences of underground repositories.

Keyword
Nuclear waste repository; Quaternary overburden; Topography
National Category
Water Engineering
Identifiers
urn:nbn:se:kth:diva-11168 (URN)000257277400017 ()2-s2.0-50549091633 (Scopus ID)
Note
QC 20100802Available from: 2009-09-25 Created: 2009-09-25 Last updated: 2010-09-17Bibliographically approved
2. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography
Open this publication in new window or tab >>Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography
2006 (English)In: Geophysical Research Letters, ISSN 0094-8276, Vol. 33, no L07402Article in journal (Refereed) Published
Abstract [en]

It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction.

Keyword
transport; catchments; stream; flow; exchange; systems; storage; zones
National Category
Geophysics Water Engineering
Identifiers
urn:nbn:se:kth:diva-11169 (URN)10.1029/2006GL025747 (DOI)000236878800008 ()
Note
QC 20100802Available from: 2009-09-25 Created: 2009-09-25 Last updated: 2010-12-07Bibliographically approved
3. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield
Open this publication in new window or tab >>Fractal topography and subsurface water flows from fluvial bedforms to the continental shield
2007 (English)In: Geophysical Research Letters, ISSN 0094-8276, Vol. 34, no L07402Article in journal (Refereed) Published
Abstract [en]

Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms ( tens of centimeters) to the continental landscape ( hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows.

Keyword
groundwater-flow; bed forms; transport; stream; exchange; catchments; dynamics; solutes; systems; storage
National Category
Geophysics Water Engineering
Identifiers
urn:nbn:se:kth:diva-11170 (URN)10.1029/2007GL029426 (DOI)000245578500005 ()2-s2.0-34250708550 (Scopus ID)
Note
QC 20100802Available from: 2009-09-25 Created: 2009-09-25 Last updated: 2010-12-07Bibliographically approved
4. The Impact of Hydraulic Conductivity on Topography Driven Groundwater Flow
Open this publication in new window or tab >>The Impact of Hydraulic Conductivity on Topography Driven Groundwater Flow
2007 (English)In: Publications - Institute of Geophysics, Polish Academy of Sciences, Series C, ISSN 0138-0117, Vol. E-7, 160-167 p.Article in journal (Refereed) Published
Abstract [en]

Landscape topography is the most important driving force for groundwaterflow and all scales of topography contribute to groundwater movement. Here we present results of how different scales of topography affect the groundwater flowat different depths. The study is based on a spectral analysis of the topographyand a couple of exact 3-D solutions of the groundwater flow. We are also analyzing how different heterogeneities of the subsurface hydraulic conductivity impactthe groundwater flow at different depths and alter the relative importance of differenttopographic scales on the groundwater flow. Quaternary deposits are extremelyimportant for the infiltration at the ground surface, but the effect is primarilyconstrained to the deposit strata. Depth dependent hydraulic conductivity has a major impact on the size and depth of the groundwater flow cells, but italso affects the infiltration at the surface. Depth dependent hydraulic conductivity tends to counteract the effect of the large-scale topography on the groundwater flow more effectively than the smaller landscape scales.

National Category
Water Engineering
Identifiers
urn:nbn:se:kth:diva-11171 (URN)
Note

QC 20100802

Available from: 2009-09-25 Created: 2009-09-25 Last updated: 2016-12-09Bibliographically approved
5. The Use of Spectral Analysis to Characterize Topography- Controlled Groundwater Flow
Open this publication in new window or tab >>The Use of Spectral Analysis to Characterize Topography- Controlled Groundwater Flow
(English)Manuscript (preprint) (Other academic)
National Category
Water Engineering
Identifiers
urn:nbn:se:kth:diva-14291 (URN)
Note
QC 20100730Available from: 2010-07-30 Created: 2010-07-30 Last updated: 2010-08-02Bibliographically approved
6. Topographic and Geological controls of Groundwater Renewal.
Open this publication in new window or tab >>Topographic and Geological controls of Groundwater Renewal.
(English)Manuscript (preprint) (Other academic)
National Category
Water Engineering
Identifiers
urn:nbn:se:kth:diva-14292 (URN)
Note
QC 20100802Available from: 2010-08-02 Created: 2010-08-02 Last updated: 2010-08-02Bibliographically approved

Open Access in DiVA

fulltext(5063 kB)1057 downloads
File information
File name FULLTEXT01.pdfFile size 5063 kBChecksum SHA-512
cad32794f8659dc9249d338d23b7535a0374d4c379461bbd762ea0b9b584c5d266509a98f8627e6682d32305569750102e94bf42434989003748ecca74c21570
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Marklund, Lars
By organisation
Land and Water Resources Engineering
Oceanography, Hydrology, Water ResourcesOther Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 1057 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1709 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf