Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Symmetry-forbidden x-ray Raman scattering induced by a strong infrared-laser field
KTH, School of Biotechnology (BIO), Theoretical Chemistry.
KTH, School of Biotechnology (BIO), Theoretical Chemistry.
KTH, School of Biotechnology (BIO), Theoretical Chemistry.ORCID iD: 0000-0003-2729-0290
KTH, School of Biotechnology (BIO), Theoretical Chemistry.ORCID iD: 0000-0002-1763-9383
Show others and affiliations
2008 (English)In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 77, no 4, 043405- p.Article in journal (Refereed) Published
Abstract [en]

Resonant inelastic x-ray scattering accompanied by core-hole hopping induced by a strong infrared-laser field is studied for the nitrogen molecule. This process involves a strong laser-field-induced promotion of ungerade core holes created by a weak x-ray pulse to a gerade core level, which opens symmetry-forbidden scattering channels and gives rise to new features in the x-ray scattering spectrum. The core-hole hopping within the short lifetime of the core-excited state required for observation of the described process can be achieved at moderate intensities of the infrared field (similar to 10(12) W/cm(2)) because of the large transition dipole moment between the relevant core levels. The dynamics of resonant inelastic x-ray scattering assisted by change of core-hole parity is studied in detail versus the intensity, detuning, phase, and duration of the incident infrared-laser and x-ray pulses.

Place, publisher, year, edition, pages
2008. Vol. 77, no 4, 043405- p.
Keyword [en]
Dipole moment, Nitrogen, Phase transitions, Raman scattering, X ray scattering
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:kth:diva-11459DOI: 10.1103/PhysRevA.77.043405ISI: 000255457100107Scopus ID: 2-s2.0-41749124114OAI: oai:DiVA.org:kth-11459DiVA: diva2:276742
Note
QC 20101001Available from: 2009-11-11 Created: 2009-11-11 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Dynamics of multiphoton processes in nonlinear optics and x-ray spectroscopy
Open this publication in new window or tab >>Dynamics of multiphoton processes in nonlinear optics and x-ray spectroscopy
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

New generations of ultrashort and intense laser pulses as well ashigh power synchrotron radiation sources and x-ray free electronlasers have promoted fast developments in nonlinear optics andx-ray spectroscopy.The new experimental achievements and the appearance of varieties of novelnonlinear phenomena call for further development of theories. The objective of this thesis is to develop and apply thetheories to explain existing experimental data and to suggest new experiments.

The first part of the thesis is devoted to nonlinear propagation of optical pulses. It is shown that the vibrational levels can be selectively populated by varying the duration, shape and intensity of the pump pulse. We obtained a strict analytical solution for the resonant two-photon interaction in a multilevel system beyond rotating wave approximation. Simulations show that the polarization anisotropy of the two-photon excitation affects strongly the anisotropy of photobleaching.The two-photon area theorem is reformulated with taking into account the dynamical Stark shift and the contribution from the permanent dipole moments. In general the dynamical Stark shift does not allow complete population of the excited state, but it can be compensated by detunings in atoms. A dynamical theory of the sequential two-photon absorption of  microsecond pulses  is developed to explore the role of transverse inhomogeneity of the light beam on optical limiting properties.  The propagation of ultrashort laser pulses in nondipolar and dipolar media is investigated with special attention to the generation of superfluorescence and supercontinuum and the formation of attosecond pulses.

The second part of the thesis addresses the interaction of molecules with x-ray radiation.  We explore here the role of nuclear dynamics in resonant Auger scattering. Multimode simulations of the Auger spectra of ethylene molecule explain the main spectral features of the experimental spectra and show that the spectral profiles are formed mainly due to six vibrational modes. We predict the Doppler splitting of the atomic peak in resonant Auger scattering from SF6 molecule for circularly polarized x-rays. This effect is confirmed by the recent experiment. A new scheme of x-ray pump-probe spectroscopy, namely, resonant inelastic x-ray scattering accompanied by core-hole hopping induced by strong laser fields is suggested. The laser-induced promotion of core holes opens the symmetry forbidden scattering channels and gives rise to new spectral lines in the x-ray scattering spectrum. The strength of the symmetry forbidden lines becomes strong when  the time of Rabi flopping is shorter than the lifetime of the core-excited state. We study the role of propagation of femtosecond x-ray free-electron pulses on the Auger process. Simulations show  that there exists a strong competition between Auger decay and stimulated emission. The Auger yield and Auger branching ratio are strongly suppressed in the course of pulse propagation.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. x, 76 p.
Series
Trita-BIO-Report, ISSN 1654-2312 ; 2009:25
Keyword
nonlinear optics, x-ray spectroscopy, multiphoton processes, pulse propagation
National Category
Atom and Molecular Physics and Optics Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-11394 (URN)978-91-7415-480-1 (ISBN)
Public defence
2009-12-09, FA32, Roslagstullsbacken 21, Albanova University Center, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
QC 20100729Available from: 2009-11-11 Created: 2009-11-04 Last updated: 2010-07-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Ågren, Hans

Search in DiVA

By author/editor
Liu, Ji-CaiVelkov, YasenRinkevicius, ZilvinasÅgren, HansGel`mukhanov, Faris
By organisation
Theoretical Chemistry
In the same journal
Physical Review A. Atomic, Molecular, and Optical Physics
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf