Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-Density Microwell Chip for Culture and Analysis of Stem Cells
KTH, School of Biotechnology (BIO), Nano Biotechnology. (Proteomics)
KTH, School of Biotechnology (BIO), Gene Technology.
KTH, School of Biotechnology (BIO), Gene Technology.
Show others and affiliations
2009 (English)In: PLos ONE, ISSN 1932-6203, Vol. 4, no 9, e6997- p.Article in journal (Refereed) Published
Abstract [en]

With recent findings on the role of reprogramming factors on stem cells, in vitro screening assays for studying (de)differentiation is of great interest. We developed a miniaturized stem cell screening chip that is easily accessible and provides means of rapidly studying thousands of individual stem/progenitor cell samples, using low reagent volumes. For example, screening of 700,000 substances would take less than two days, using this platform combined with a conventional bio-imaging system. The microwell chip has standard slide format and consists of 672 wells in total. Each well holds 500 nl, a volume small enough to drastically decrease reagent costs but large enough to allow utilization of standard laboratory equipment. Results presented here include weeklong culturing and differentiation assays of mouse embryonic stem cells, mouse adult neural stem cells, and human embryonic stem cells. The possibility to either maintain the cells as stem/progenitor cells or to study cell differentiation of stem/progenitor cells over time is demonstrated. Clonality is critical for stem cell research, and was accomplished in the microwell chips by isolation and clonal analysis of single mouse embryonic stem cells using flow cytometric cell-sorting. Protocols for practical handling of the microwell chips are presented, describing a rapid and user-friendly method for the simultaneous study of thousands of stem cell cultures in small microwells. This microwell chip has high potential for a wide range of applications, for example directed differentiation assays and screening of reprogramming factors, opening up considerable opportunities in the stem cell field.

Place, publisher, year, edition, pages
2009. Vol. 4, no 9, e6997- p.
Keyword [en]
animal cell; article; biochip; cell cloning; cell culture; cell differentiation; cell screening; cell selection; controlled study; embryo; embryonic stem cell; female; flow cytometry; human; human cell; microwell chip; molecular imaging; mouse; neural stem cell; nonhuman; stem cell; animal; C57BL mouse; cell separation; culture technique; cytology; DNA microarray; equipment design; metabolism; methodology; nerve cell
National Category
Industrial Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-11661DOI: 10.1371/journal.pone.0006997ISI: 000269796300013Scopus ID: 2-s2.0-70349206057OAI: oai:DiVA.org:kth-11661DiVA: diva2:279093
Note
QC 20100728Available from: 2009-12-01 Created: 2009-12-01 Last updated: 2011-10-31Bibliographically approved
In thesis
1. Microwell devices for single-cell analyses
Open this publication in new window or tab >>Microwell devices for single-cell analyses
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Powerful tools for detailed cellular studies are emerging, increasing the knowledge ofthe ultimate target of all drugs: the living cell. Today, cells are commonly analyzed inensembles, i.e. thousands of cells per sample, yielding results on the average responseof the cells. However, cellular heterogeneity implies the importance of studying howindividual cells respond, one by one, in order to learn more about drug targeting andcellular behavior. In vitro assays offering low volume sampling and rapid analysis in ahigh-throughput manner are of great interest in a wide range of single-cellapplications.

This work presents a microwell device in silicon and glass, developed using standardmicrofabrication techniques. The chip was designed to allow flow-cytometric cellsorting, a controlled way of analyzing and sorting individual cells for dynamic cultureand clone formation, previously shown in larger multiwell plates only. Dependent onthe application, minor modifications to the original device were made resulting in agroup of microwell devices suitable for various applications. Leukemic cancer cellswere analyzed with regard to their clonogenic properties and a method forinvestigation of drug response of critical importance to predict long-term clinicaloutcome, is presented. Stem cells from human and mouse were maintainedpluripotent in a screening assay, also shown useful in studies on neural differentiation.For integrated liquid handling, a fluidic system was integrated onto the chip fordirected and controlled addition of reagents in various cell-based assays. The chip wasproduced in a slide format and used as an imaging tool for low-volume sampling withthe ability to run many samples in parallel, demonstrated in a protein-binding assay fora novel bispecific affinity protein. Moving from cells and proteins into geneticanalysis, a method for screening genes from clones in a rapid manner was shown bygene amplification and mutation analysis in individual wells. In summary, a microwelldevice with associated methods were developed and applied in a range of biologicalinvestigations, particularly interesting from a cell-heterogeneity perspective.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. xii, 80 p.
Series
Trita-BIO-Report, ISSN 1654-2312 ; 2009:23
Keyword
microwell, miniaturization, microfluidics, cell culture, single-cell, clone, imaging, stem cell, cancer, low volume, high-throughput
National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:kth:diva-11665 (URN)978-91-7415-477-1 (ISBN)
Public defence
2009-12-11, FR4 Oscar Klein, AlbaNova, Roslagstullsbacken, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20100728Available from: 2009-12-01 Created: 2009-12-01 Last updated: 2011-11-23Bibliographically approved
2. Massively parallel analysis of cells and nucleic acids
Open this publication in new window or tab >>Massively parallel analysis of cells and nucleic acids
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Recent proceedings in biotechnology have enabled completely new avenues in life science research to be explored. By allowing increased parallelization an ever-increasing complexity of cell samples or experiments can be investigated in shorter time and at a lower cost. This facilitates for example large-scale efforts to study cell heterogeneity at the single cell level, by analyzing cells in parallel that also can include global genomic analyses. The work presented in this thesis focuses on massively parallel analysis of cells or nucleic acid samples, demonstrating technology developments in the field as well as use of the technology in life sciences.

In stem cell research issues such as cell morphology, cell differentiation and effects of reprogramming factors are frequently studied, and to obtain information on cell heterogeneity these experiments are preferably carried out on single cells. In paper I we used a high-density microwell device in silicon and glass for culturing and screening of stem cells. Maintained pluripotency in stem cells from human and mouse was demonstrated in a screening assay by antibody staining and the chip was furthermore used for studying neural differentiation. The chip format allows for low sample volumes and rapid high-throughput analysis of single cells, and is compatible with Fluorescence Activated Cell Sorting (FACS) for precise cell selection.

Massively parallel DNA sequencing is revolutionizing genomics research throughout the life sciences by constantly producing increasing amounts of data from one sequencing run. However, the reagent costs and labor requirements in current massively parallel sequencing protocols are still substantial. In paper II-IV we have focused on flow-sorting techniques for improved sample preparation in bead-based massive sequencing platforms, with the aim of increasing the amount of quality data output, as demonstrated on the Roche/454 platform. In paper II we demonstrate a rapid alternative to the existing shotgun sample titration protocol and also use flow-sorting to enrich for beads that carry amplified template DNA after emulsion PCR, thus obtaining pure samples and with no downstream sacrifice of DNA sequencing quality. This should be seen in comparison to the standard 454-enrichment protocol, which gives rise to varying degrees of sample purity, thus affecting the sequence data output of the sequencing run. Massively parallel sequencing is also useful for deep sequencing of specific PCR-amplified targets in parallel. However, unspecific product formation is a common problem in amplicon sequencing and since these shorter products may be difficult to fully remove by standard procedures such as gel purification, and their presence inevitably reduces the number of target sequence reads that can be obtained in each sequencing run. In paper III a gene-specific fluorescent probe was used for target-specific FACS enrichment to specifically enrich for beads with an amplified target gene on the surface. Through this procedure a nearly three-fold increase in fraction of informative sequences was obtained and with no sequence bias introduced. Barcode labeling of different DNA libraries prior to pooling and emulsion PCR is standard procedure to maximize the number of experiments that can be run in one sequencing lane, while also decreasing the impact of technical noise. However, variation between libraries in quality and GC content affects amplification efficiency, which may result in biased fractions of the different libraries in the sequencing data. In paper IV barcode specific labeling and flow-sorting for normalization of beads with different barcodes on the surface was used in order to weigh the proportion of data obtained from different samples, while also removing mixed beads, and beads with no or poorly amplified product on the surface, hence also resulting in an increased sequence quality.

In paper V, cell heterogeneity within a human being is being investigated by low-coverage whole genome sequencing of single cell material. By focusing on the most variable portion of the human genome, polyguanine nucleotide repeat regions, variability between different cells is investigated and highly variable polyguanine repeat loci are identified. By selectively amplifying and sequencing polyguanine nucleotide repeats from single cells for which the phylogenetic relationship is known, we demonstrate that massively parallel sequencing can be used to study cell-cell variation in length of these repeats, based on which a phylogenetic tree can be drawn.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xi, 71 p.
Series
Trita-BIO-Report, ISSN 1654-2312 ; 2011:22
Keyword
Massively parallel sequencing, 454, Illumina, multiplex amplification, whole genome amplification, single cell, polyguanine, flow-cytometry
National Category
Biological Sciences
Identifiers
urn:nbn:se:kth:diva-45671 (URN)978-91-7501-123-3 (ISBN)
Public defence
2011-11-18, Lennart Nilsson-salen, Nobels väg 15A, Karolinska Institutet, Solna, 10:00 (English)
Opponent
Supervisors
Note
QC 20111031Available from: 2011-10-31 Created: 2011-10-31 Last updated: 2011-11-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lindström, SaraVazin, TandisSandberg, JuliaLundeberg, JoakimAndersson-Svahn, Helene
By organisation
Nano BiotechnologyGene TechnologySchool of Biotechnology (BIO)
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 128 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf