Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Single quantum dots emit single photons at a time: Antibunching experiments
KTH, Superseded Departments, Electronics.ORCID iD: 0000-0002-5584-9170
KTH, Superseded Departments, Electronics.
Show others and affiliations
2001 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 78, no 17, 2476- p.Article in journal (Refereed) Published
Abstract [en]

We have studied the photoluminescence correlation from a single InAs/GaAs self-assembled Stranski–Krastanow quantum dot under continuous, as well as under pulsed excitation. Under weak continuous excitation, where the single dot luminescence is due primarily to single exciton recombinations, antibunching is observed in the single dot emission correlation. Under weak pulsed excitation, the number of photons emitted by the quantum dot per pulse is close to one. We present data obtained under both conditions and are able to show that devices based on single quantum dots can be used to generate single photons.

Place, publisher, year, edition, pages
2001. Vol. 78, no 17, 2476- p.
Keyword [en]
room-temperature, fluorescence, molecule, gaas
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-12418DOI: 10.1063/1.1366367ISI: 000168304600021OAI: oai:DiVA.org:kth-12418DiVA: diva2:311157
Note
QC 20100420Available from: 2010-04-20 Created: 2010-04-20 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Correlation spectroscopy of single emitters: fundamental studies and applications
Open this publication in new window or tab >>Correlation spectroscopy of single emitters: fundamental studies and applications
2001 (English)Licentiate thesis, comprehensive summary (Other scientific)
Abstract [en]

Correlation analysis and correlation spectroscopy has eversince the first developments, to characterise light emittingprocesses and biomolecular dynamics, continued to extend itspractical applicability. Today, correlation spectroscopy can beused in life science to study dynamical processes even at thesingle molecule level. Correlation analysis can in one of itsextreme be applied to investigate single photon processes fromsolid-state emitters. This thesis is an account of my studiesof fluorescent emitter related to quantum optics and lifescience. It presents some fundamental results and discussesapplications of emitters like single quantum dots or singledyes attached to biomolecules. The studies were performed bythe means of correlation analysis and correlation spectroscopyon self-made optical setups. One task of this thesis was todevelop fluorescence correlation spectroscopy for ultravioletexcitation and emission. With ultraviolet excitation thenatural intrinsic chromophores of certain nucleotides and aminoacids can be used. No external labelling of biomolecules couldbecome a reality using ultraviolet excitation and emission. Asecond task was to apply correlation spectroscopy to performhigh spatial-resolution flow profiling and trafficking ofsingle dye-labeled biomolecules in microstructured channels.Future transports effects, flow monitoring, flow profiling andprolonged fluorescence detection in artificial microstructuresor in cells, could benefit from this application. An additionaltask was to apply correlation spectroscopy to so-calledmicroarrays for parallel acquisition of dynamical data at thesingle molecule level. Parallel excitation and detection wasachieved with the use of diffractive optical elements andintegrated semiconductor single-photon sensitive detectors. Thecurrent throughput rate in biological diagnostic or screeninganalysis could be increased dramatically with implementation ofthis parallel confocal excitation and detection technique. Yetanother task of this thesis was to investigations single-photongeneration by InAs-semiconductor quantum dots. We show that aquantum dots can be used for single-photon generation ondemand. Besides the single-photon generation in quantum dots,the possibility of two-photon generation, and generation ofentangled photon-pair, has also been investigated

Place, publisher, year, edition, pages
Stockholm: KTH, 2001. xiv, 49 p.
Series
Trita-MVT, ISSN 0348-4467 ; 2001:3
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-1314 (URN)91-628-4876-3 (ISBN)
Presentation
(English)
Note
QC 20100420 NR 20140805Available from: 2001-10-23 Created: 2001-10-23 Last updated: 2010-04-28Bibliographically approved
2. Correlation spectrosopy of single eitters: fundamental studies and applications related to quantum optics and life science
Open this publication in new window or tab >>Correlation spectrosopy of single eitters: fundamental studies and applications related to quantum optics and life science
2003 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Correlation analysis and correlation spectroscopy has eversince the first developments, to characterise light emittingprocesses and biomolecular dynamics, continued to extend itspractical applicability. Today, correlation spectroscopy can beused in life science to study dynamical processes even at thesingle molecule level. Correlation analysis can in one of itsextreme be applied to investigate single photon processes fromsolid-state emitters. This thesis is an account of my studiesof fluorescent emitter related to quantum optics and lifescience. It presents some fundamental results and discussesapplicationsof emitters like single quantum dots or singledyes attached to biomolecules. The studies were performed bythe means of correlation analysis and correlation spectroscopyon self-made optical setups. One task of this thesis was todevelop fluorescence correlation spectroscopy for ultravioletexcitation and emission. With ultraviolet excitation thenatural intrinsic chromophores of certain nucleotides and aminoacids can be used. No external labelling of biomolecules couldbecome a reality using ultraviolet excitation and emission. Asecond task was to apply correlation spectroscopy to performhigh spatial-resolution flow profiling and trafficking ofsingle dye-labeled biomolecules in microstructured channels.Future transports effects, flow monitoring, flow profiling andprolonged fluorescence detection in artificial microstructuresor in cells, could benefit from this application. An additionaltask was to apply correlation spectroscopy to so-calledmicroarrays for parallel acquisition of dynamical data at thesingle molecule level. Parallel excitation and detection wasachieved with the use of diffractive optical elements andintegrated semiconductor single-photon sensitive detectors. Thecurrent throughput rate in biological diagnostic or screeninganalysis could be increased dramatically with implementation ofthis parallel confocal excitation and detection technique. Yetanother task of this thesis was to investigations single-photongeneration by InAs-semiconductor quantum dots. We show that aquantum dots can be used for single-photon generation ondemand. Besides the single-photon generation in quantum dots,the possibility of two-photon generation, and generation ofentangled photon-pair, has also been investigated.

Place, publisher, year, edition, pages
Stockholm: KTH, 2003. xviii, 85 p.
Series
Trita-MVT, ISSN 0348-4467 ; 2003:7
Keyword
optics, analytical chemistry, solid states
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-3593 (URN)91-7283-520-6 (ISBN)
Public defence
2003-09-23, 00:00 (English)
Note
QC 20100423 NR 20140805Available from: 2003-09-16 Created: 2003-09-16 Last updated: 2010-04-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Blom, HansBjörk, Gunnar

Search in DiVA

By author/editor
Blom, HansBjörk, Gunnar
By organisation
Electronics
In the same journal
Applied Physics Letters
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 112 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf