Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of coupling to spectra of weakly damped eigenmodes in the ion cyclotron range of frequencies on parasitic absorption in rectified radio frequency sheaths
KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
2005 (English)In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 12, no 3Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2005. Vol. 12, no 3
Keyword [en]
WAVE CURRENT DRIVE, H-MODE PLASMAS, DIII-D TOKAMAK, ICRF ANTENNAS, EDGE PLASMA, JET, TFTR, RESONANCE, SCREENS
Identifiers
URN: urn:nbn:se:kth:diva-12766DOI: 10.1063/1.1851988ISI: 000227385700022Scopus ID: 2-s2.0-17044428884OAI: oai:DiVA.org:kth-12766DiVA: diva2:318753
Note
QC 20100510Available from: 2010-05-10 Created: 2010-05-10 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Fast wave heating and current drive in tokamaks
Open this publication in new window or tab >>Fast wave heating and current drive in tokamaks
2005 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

This thesis concerns heating and current drive in tokamak plasmas using the fast magnetosonic wave in the ion cyclotron range of frequencies. Fast wave heating is a versatile heating method for thermonuclear fusion plasmas and can provide both ion and electron heating and non-inductive current drive. Predicting and interpreting realistic heating scenarios is however difficult due to the coupled evolution of the cyclotron resonant ion velocity distributions and the wave field. The SELFO code, which solves the coupled wave equation and Fokker-Planck equation for cyclotron resonant ion species in a self-consistent manner, has been upgraded to allow the study of more advanced fast wave heating and current drive scenarios in present day experiments and in preparation for the ITER tokamak.

Theoretical and experimental studies related to fast wave heating and current drive with emphasis on fast ion effects are presented. Analysis of minority ion cyclotron current drive in ITER indicates that the use of a hydrogen minority rather than the proposed helium-3 minority results in substantially more efficient current drive. The parasitic losses of power to fusion born alpha particles and beam injected ions are concluded to be acceptably low. Experiments performed at the JET tokamak on polychromatic ion cyclotron resonance heating and on fast wave electron current drive are presented and analysed. Polychromatic heating is demonstrated to increase the bulk plasma ion to electron heating ratio, in line with theoretical expectations, but the fast wave electron current drive is found to be severely degraded by parasitic power losses outside of the plasma. A theoretical analysis of parasitic power losses at radio frequency antennas indicates that the losses can be significantly increased in scenarios with low wave damping and with narrow antenna spectra, such as in electron current drive scenarios.

Place, publisher, year, edition, pages
Stockholm: KTH, 2005. xiv, 42 p.
Keyword
Tokamak, JET, ITER, thermonuclear fusion, fast wave, heating, current drive, ion cyclotron resonance, polychromatic, finite orbit widths, RF-induced transport, neutral beam injection, fusion born alpha particles, magnetosonic eigenmodes, parasitic absorption, modelling, weighted Monte Carlo scheme, Fysik
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-118 (URN)91-7283-954-6 (ISBN)
Public defence
2005-02-08, Kollegiesalen, Valhallavägen 79, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20100506Available from: 2005-02-04 Created: 2005-02-04 Last updated: 2011-02-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hellsten, TorbjörnLaxåback, Martin
By organisation
Alfvén Laboratory Centre for Space and Fusion Plasma Physics
In the same journal
Physics of Plasmas

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf