Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Grid-generated turbulence revisited
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0002-3251-8328
2009 (English)In: Fluid Dynamics Research, ISSN 0169-5983, E-ISSN 1873-7005, Vol. 41, no 2, 021403- p.Article in journal (Refereed) Published
Abstract [en]

In this study we characterize the turbulence, by means of energy spectra, characteristic turbulence length scales, energy dissipation, kinetic energy decay rate etc., behind a set of grids with the feature of having roughly the same solidity but different mesh and bar widths. This is one way of being able to vary the turbulence characteristic length scales while keeping the same turbulence intensity, which is usually a difficult task for experimentalists. Measurements are performed by using, on the one hand, traditional hot-wire x-probes oriented in both directions giving information about all three directional velocity components and, on the other hand, small single-wire probes for faster frequency response. Independent procedures to calculate some quantities are summarized and performed in the present paper and compared with correlation functions based on homogeneous isotropic turbulence as well as semi-empirical relations. For grid-generated turbulence, which often erroneously is described as isotropic (actually a rare condition), relations derived based on isotropic turbulence are frequently used. Here, we show that dissipation rates and length scales may be inaccurate by as much as 50% or more when compared with valid anisotropic relations. The paper ends with a comparison of the turbulence characteristics between the zero pressure gradient case and a favorable pressure gradient case with a small degree of cross flow. With the pressure gradient, a reduction of the integral and Taylor length scales of about 20% and 30%, respectively, is reported for a large mesh width, whereas no change is observed for a small one.

Place, publisher, year, edition, pages
2009. Vol. 41, no 2, 021403- p.
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-12945DOI: 10.1088/0169-5983/41/2/021403ISI: 000270658300004Scopus ID: 2-s2.0-66149084895OAI: oai:DiVA.org:kth-12945DiVA: diva2:319773
Note
QC20100524Available from: 2010-05-19 Created: 2010-05-19 Last updated: 2017-12-12Bibliographically approved
In thesis
1. An experimental investigation of disturbance growth in boundary layer flows
Open this publication in new window or tab >>An experimental investigation of disturbance growth in boundary layer flows
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis deals with the early stages of transition to turbulence in two different baseflows, namely the Falkner-Skan-Cooke boundary layer (FSC) and the asymptotic suction boundary layer (ASBL). Grid-generated turbulence is studied in order to characterise the isotropy levels, free-stream turbulence levels and characteristic length scales that will be present in the receptivity study. By varying the grids and their location it is possible to control the turbulence intensity level, Tu, and the integral length scale independently. Comparisons with other studies show that for increasing Re_M the isotropy levels and the rate of kinetic energy decay asymptotically approach the theoretical values. The FSC describes a a 3D boundary layer subjected to a pressure gradient. The FSC is stable to TS-waves, but becomes susceptible to both travelling and stationary crossflow disturbances. In the experiments the travelling modes were triggered using free-stream turbulence (FST) and the stationary modes were triggered using an array of cylindrical roughness elements. The receptivity phase to FST was linear as well as the initial growth. For high enough $Tu$ inside the boundary layer, nonlinear behaviour was observed further downstream. The stationary mode could only be triggered using tall roughness elements, with low heights resulting in no noticeable disturbances. The receptivity is found to be nonlinear for the roughness heights tested and the growth of the disturbances is exponential. For low levels of FST, Tu < 0.25%, the travelling mode as well as the stationary mode grew. The ASBL is formed when uniform suction is applied to the surface of a porous plate with a flow over it. This baseflow is very stable to TS-waves, and was used to study the transient growth. For the ASBL, stationary disturbances were triggered using a spanwise array or cylindrical roughness elements. The velocity signals were decomposed using a spatial Fourier transform to study the growth of individual modes. The fundamental mode as well as some harmonics were seen to undergo transient growth, before finally decaying exponentially. Comparisons were made to the experimental data using optimal perturbation theory. The global optimals did not describe the transient growth effects well. The calculations were redone for suboptimal times and showed agreement with the experimental data, showing that optimal perturbation theory can describe transient growth if the initial disturbance state is known.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. viii, 41 p.
Series
Trita-MEK, ISSN 0348-467X ; 2010:04
National Category
Fluid Mechanics and Acoustics Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-12949 (URN)978-91-7415-654-6 (ISBN)
Public defence
2010-06-11, F3, Linstedsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC20100702Available from: 2010-05-24 Created: 2010-05-19 Last updated: 2010-07-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusFluid Dynamics Research

Authority records BETA

Fransson, Jens

Search in DiVA

By author/editor
Kurian, ThomasFransson, Jens
By organisation
Linné Flow Center, FLOWMechanics
In the same journal
Fluid Dynamics Research
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 125 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf