Change search
ReferencesLink to record
Permanent link

Direct link
Flow-volume loops derived from three-dimensional echocardiography: a novel approach to the assessment of left ventricular hemodynamics
Show others and affiliations
2008 (English)In: Cardiovascular Ultrasound, ISSN 1476-7120, Vol. 6Article in journal (Refereed) Published
Abstract [en]

Background: This study explores the feasibility of non-invasive evaluation of left ventricular (LV) flow-volume dynamics using 3-dimensional (3D) echocardiography, and the capacity of such an approach to identify altered LV hemodynamic states caused by valvular abnormalities.

Methods: Thirty-one patients with moderate-severe aortic (AS) and mitral (MS) stenoses (21 and 10 patients, respectively) and 10 healthy volunteers underwent 3D echocardiography with full volume acquisition using Philips Sonos 7500 equipment. The digital 3D data were post-processed using TomTec software. LV flow-volume loops were subsequently constructed for each subject by plotting instantaneous LV volume data sampled throughout the cardiac cycle vs. their first derivative representing LV flow. After correction for body surface area, an average flow-volume loop was calculated for each subject group.

Results: Flow-volume loops were obtainable in all subjects, except 3 patients with AS. The flow-volume diagrams displayed clear differences in the form and position of the loops between normal individuals and the respective patient groups. In patients with AS, an "obstructive" pattern was observed, with lower flow values during early systole and larger end-systolic volume. On the other hand, patients with MS displayed a "restrictive" flow-volume pattern, with reduced diastolic filling and smaller end-diastolic volume.

Conclusion: Non-invasive evaluation of LV flow-volume dynamics using 3D-echocardiographic data is technically possible and the approach has a capacity to identify certain specific types of alteration of LV flow-volume pattern caused by valvular abnormalities, thus reflecting underlying hemodynamic states specific for these abnormalities.

Place, publisher, year, edition, pages
2008. Vol. 6
Keyword [en]
National Category
Medical Laboratory and Measurements Technologies
URN: urn:nbn:se:kth:diva-12962DOI: 10.1186/1476-7120-6-13ISI: 000255908600001ScopusID: 2-s2.0-42449155086OAI: diva2:319897
QC 20100629Available from: 2010-05-20 Created: 2010-05-20 Last updated: 2011-05-27Bibliographically approved
In thesis
1. Assessment of Left Ventricular Function and Hemodynamics Using Three-dimensional Echocardiography
Open this publication in new window or tab >>Assessment of Left Ventricular Function and Hemodynamics Using Three-dimensional Echocardiography
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Left ventricular (LV) volumes and ejection fraction (EF) are important predictors of cardiac morbidity and mortality. LV volumes provide valuable prognostic information which isparticularly useful in the selection of therapy or determination of the optimal time for surgery. Two-dimensional (2D) echocardiography is the most widely used non-invasive method forassessment of cardiac function, 2D echocardiography has however several limitations inmeasuring LV volumes and EF since the formulas for quantifications are based on geometricalassumptions. Three-dimensional (3D) echocardiography has been available for almost twodecades, although the use of this modality has not gained wide spread acceptance. 3D echocardiography can overcome the above mentioned limitation in LV volume and EF evaluation since it is not based on geometrical assumption. 3D echocardiography has been shownin several studies to be more accurate and reproducible with low inter- and intraobservervariability in comparison to 2D echocardiography regarding the measurements of LV volumesand EF.

The overall aim of the thesis was to evaluate the feasibility and accuracy of 3D echocardiography based-methods in the clinical context.

In Study I the feasibility of 3D echocardiography was investigated for determination of LV volumes and EF using parasternal, apical and subcostal approaches. The study demonstrated that the apical 3D echocardiography view offers superior visualization.

Study II tested the possibility of creating flow-volume loops to differentiate patients with valvular abnormalities from normal subjects. There were significant differences in the pattern from flow-volume loops clearly separating the groups.

In Study III the visual estimation, “eyeballing” of EF was evaluated with two- and tri-plane echocardiography in comparison to quantitative 3D echocardiography. The study confirmed that an experienced echocardiographer can, with a high level of agreement estimate EF both with two- and tri-plane echocardiography.

Study IV exposed the high accuracy of stroke volume and cardiac output determination using a3D biplane technique by planimetrically tracing the left ventricular outflow tract and indicating that an assumption of circular left ventricular outflow tract is not reliable.

In Study V, two 3D echocardiography modalities, single-beat and four-beat ECG-gated 3D echocardiography were evaluated in patients having sinus rhythm and atrial fibrillation. Thesingle-beat technique showed significantly lower inter-and intraobserver variability in LV volumes and EF measurements in patients having atrial fibrillation in comparison to four-beat ECG-gated acquisition due to absence of stitching artifact.

All studies demonstrated good results suggesting 3D echocardiography to be a feasible andaccurate method in daily clinical settings.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. xvi, 52 p.
Trita-STH : report, ISSN 1653-3836 ; 2010:2
Three-dimensional echocardiography, heart chambers, flow-volume loop, left ventricular ejection fraction, visualization, left ventricular stroke volume, left ventricular outflow tract, and single-heartbeat
National Category
Biomedical Laboratory Science/Technology
urn:nbn:se:kth:diva-12966 (URN)978-91-7415-621-8 (ISBN)
Public defence
2010-06-04, Huddinge sjukhus, lokal C1-87, Stockholm, 09:00 (English)
degree of Medical Doctor QC 20100629Available from: 2010-05-20 Created: 2010-05-20 Last updated: 2010-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Shahgaldi, KambizBrodin, Lars-Åke
By organisation
Medical Engineering
In the same journal
Cardiovascular Ultrasound
Medical Laboratory and Measurements Technologies

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 43 hits
ReferencesLink to record
Permanent link

Direct link