Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cepstral coefficients, covariance lags, and pole-zero models for finite data strings
KTH, Superseded Departments, Mathematics.
KTH, Superseded Departments, Mathematics.
KTH, Superseded Departments, Mathematics.ORCID iD: 0000-0002-2681-8383
2001 (English)In: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 49, no 4, 677-693 p.Article in journal (Refereed) Published
Abstract [en]

One of the most widely used methods of spectral estimation in signal and speech processing is linear predictive coding (LPC). LPC has some attractive features, which account for its popularity, including the properties that the resulting modeling filter i) matches a finite window of n + 1 covariance lags, ii) is rational of degree at most n, and iii) has stable zeros and poles. The only limiting factor of this methodology is that the modeling filter is "all-pole," i.e., an autoregressive (AR) model. In this paper, we present a systematic description of all autoregressive moving-average (ARMA) models of processes that have properties i)-iii) in the context of cepstral analysis and homomorphic filtering. Indeed, we show that each such ARMA model determines and is completely determined by its finite windows of cepstral coefficients and covariance lags. This characterization has an intuitively appealing interpretation of a characterization by using measures of the transient and the steady-state behaviors of the signal, respectively. More precisely, we show that these nth-order windows form local coordinates for all ARMA models of degree n and that the pole-zero model can be determined from the windows as the unique minimum of a convex objective function. We refine this optimization method by first noting that the maximum entropy design of an LPC filter is obtained by maximizing the zeroth cepstral coefficient, subject to the constraint i). More generally, we modify this scheme to a more well-posed optimization problem where the covariance data enters as a constraint and the linear weights of the cepstral coefficients are "positive"-in a sense that a certain pseudo-polynomial is positive-rather succinctly generalizing the maximum entropy method. This new problem is a homomorphic filter generalization of the maximum entropy method, providing a procedure for the design of any stable, minimum-phase modeling filter of degree less or equal to n that interpolates the given covariance window We conclude the paper by presenting an algorithm for realizing these biters in a lattice-ladder form, given the covariance window and the moving average part of the model. While we also show how to determine the moving average part using cepstral smoothing, one can make use of any good a priori estimate for the system zeros to initialize the algorithm. Indeed, we conclude the paper with an example of this method, incorporating an example from the literature on ARMA modeling.

Place, publisher, year, edition, pages
2001. Vol. 49, no 4, 677-693 p.
Keyword [en]
autoregressive moving average processes, cepstral analysis, covariance analysis, identification, maximum entropy methods, optimization methods, spectral analysis, speech analysis, HOMOMORPHIC PREDICTION, REALIZATION, ALGORITHMS, SPECTRA
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-13172DOI: 10.1109/78.912912ISI: 000167587600001OAI: oai:DiVA.org:kth-13172DiVA: diva2:321479
Note
QC 20100601Available from: 2010-06-01 Created: 2010-06-01 Last updated: 2010-06-01Bibliographically approved
In thesis
1. Spectral Estimation by Geometric, Topological and Optimization Methods
Open this publication in new window or tab >>Spectral Estimation by Geometric, Topological and Optimization Methods
2001 (English)Doctoral thesis, comprehensive summary (Other scientific)
Place, publisher, year, edition, pages
Stockholm: KTH, 2001. xii, 32 p.
Series
Trita-MAT, ISSN 1401-2286 ; 01-OS-03
Keyword
Spectral Estimation, ARMA models, Covariance analysis, Cepstral analysis, Markov parameters, Global analysis, Convex Optimization, Continuation methods, Entropy maximization
National Category
Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-3118 (URN)
Public defence
2001-04-06, 00:00 (English)
Note
QC 20100601Available from: 2001-03-29 Created: 2001-03-29 Last updated: 2010-06-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Lindquist, Anders

Search in DiVA

By author/editor
Byrnes, ChristopherEnqvist, PerLindquist, Anders
By organisation
Mathematics
In the same journal
IEEE Transactions on Signal Processing
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf