Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An efficient passive RFID system for ubiquitous identification and sensing using impulse UWB radio
KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
2007 (English)In: Elektrotechnik und Informationstechnik, ISSN 0932-383X, Vol. 124, no 11, 397-403 p.Article in journal (Refereed) Published
Abstract [en]

The next generation RFID system for ubiquitous identification and sensing requires both energy and system efficiency. This paper describes an efficient passive RFID system using impulse ultra-wideband radio (IR-UWB), at a 10 m operation range. Unlike conventional passive RFID systems which rely on backscatter and narrowband radio, IR-UWB is introduced as the uplink (communication from a tag to a reader). By utilizing a specialized communication protocol and a novel ALOHA-based anti-collision algorithm, such semi-UWB systems enable a high network throughput (2000 tag/sec) under the low power and low cost constraint. A low power tag design for proof of concept is finally presented.

Place, publisher, year, edition, pages
2007. Vol. 124, no 11, 397-403 p.
Keyword [en]
Broadband networks; Congestion control (communication); Electronic document identification systems; Radio links; Sensor networks, Impulse ultra-wideband radio (IR-UWB); Network throughput; Semi-UWB architecture; Ubiquitous sensing, Ubiquitous computing
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-13871DOI: 10.1007/s00502-007-0483-yScopus ID: 2-s2.0-37349003142OAI: oai:DiVA.org:kth-13871DiVA: diva2:327842
Note
QC 20100630Available from: 2010-06-30 Created: 2010-06-30 Last updated: 2012-01-10Bibliographically approved
In thesis
1. Ultra Wideband Impulse Radio for Wireless Sensing and Identification
Open this publication in new window or tab >>Ultra Wideband Impulse Radio for Wireless Sensing and Identification
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Ubiquitous computing and Internet-of-Things (IoT) implies an untapped opportunity in the realm of information and communication technology, in which a large number of micro-devices with communication and/or computing capabilities, provides connectivity for anything, by anyone at anytime and anywhere. Especially, these devices can be equipped with sensors and actuators that interact with our living environment. Barcode, smart contactless card, Radio Frequency Identification (RFID) systems, wireless sensor network (WSN), and smart mobile phones are some examples which can be utilized in ubiquitous computing. RFIDs and WSN have been recognized as the two promising enablers for realization of ubiquitous computing. They have some great features such as low-cost and small- size implementation, non-line of sight operation, sensing possibilities, data storing ability, and positioning. However, there are several challenges which need to be addressed, such as limited life time for battery powered device, maintenance cost, longer operation range, higher data rate, and operation in dense multipath and multiuser environment. Ultra-Wideband Impulse Radio (UWB-IR) with its huge advantages has been recognized as a great solution for future WSN and RFID. UWB-IR technique has the possibility of achieving Gb/s data rate, hundreds of meter operation range, pJ energy per bit, centimeter accuracy of positioning, and low cost implementation. In this work utilization of UWB-IR in WSN and RFID is investigated. A wireless sensor network based on UWB-IR is proposed focusing on low-cost and low-power implementation. Our contribution is to imply two different architectures in base station and sensor nodes to satisfy power, complexity and cost constraints. For sensor nodes, an autonomous UWB-IR detection is proposed, which detects the UWB signal autonomously and no restrict synchronization is required. It reduces the circuit complexity significantly. The performance in term of bit-error-rate is compared with two other common detection techniques. It is shown that the new detection is more robustness to timing jitter and clock skew, which consequently reduces the clock and synchronization requirements considerably. A novel wireless sensing and identification system, based on remote-powered tag with asymmetric wireless link, is proposed. Our innovative contribution is to deploy two different UWB and UHF communication techniques in uplink and downlink respectively. In the proposed system, tags capture the required power supply from different environmental sources (e.g. electromagnetic wave transmitted by a reader) and transmit data through an ultra-low power impulse UWB link. A new communication protocol is devised based on slotted-aloha anti-collision algorithm. By introducing several improvements including of pipelined communication, adaptive frame size, and skipping idle slots, the system throughput of more than 2000 tags/s is achieved. To prove the system concept a single chip integrated tag is implemented in UMC 0.18μm CMOS process. The measurement results show the minimum sensitivity of -18.5 dB (14.1 μW) and adaptive data rate up to 10 Mb/s. It corresponds to 13.9 meters operation range, considering 4W EIRP, a matched antenna to the tag with 0dB gain, and free space path loss. This is a great improvement in operation range and data rate, compared with conventional passive RFID, which data rate is limited to a few hundreds of Kb/s. System integration in a Liquid-Crystal-polymer (LCP) substrate is investigated. The integration of a tunable UWB-IR transmitter and a power scavenging unit are studied. Our contribution includes embedding and modeling the RF components and antenna in substrate and co-optimizing the chip and package with on-chip versus off-chip passives trade-offs. Simulation results verify the potential of system-on-package solution for UWB integration. The effect of antenna miniaturization in a UWB system is studied. Our focus is to scale down a UWB antenna and optimize the performance through the chip-antenna co-design. A tunable impulse- UWB transmitter is designed in two cases - a conventional 50Ω design and a co-design methodology. The simulation results show that the standard 50Ω design technique can not reach the best condition in all cases, when a real antenna is placed into the system. The performance can be improved significantly when doing codesign. The antennas and UWB transmitter performances are evaluated in a given UWB systems. It is shown that the operation distance at a target performance is reduced with antenna scaling factor and it can be compensated by antenna-transceiver co-design. The result proves the importance of antenna-transceiver codesign, which needs to be addressed in the earliest phases of the design flow.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. xvi, 72 p.
Series
Trita-ICT-ECS AVH, ISSN 1653-6363 ; 08:09
Keyword
Ubiquitous computing, Impulse Radio, Ultra wideband, RFID, Wireless sensor, WSN, Antenna, System-on-Package
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-9565 (URN)978-91-7415-153-4 (ISBN)
Public defence
2008-12-04, Sal D, KTH-Forum, Isafjordsgatan 39, Kista, 13:00 (English)
Opponent
Supervisors
Note
QC 20100701Available from: 2008-11-17 Created: 2008-11-14 Last updated: 2010-07-01Bibliographically approved
2. Impulse Radio UWB for the Internet-of-Things: A Study on UHF/UWB Hybrid Solution
Open this publication in new window or tab >>Impulse Radio UWB for the Internet-of-Things: A Study on UHF/UWB Hybrid Solution
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This dissertation investigates Ultra-Wideband (UWB) techniques for the next generation Radio Frequency Identification (RFID) towards the Internet-of-Things (IoT). In particular, an ultra-high frequency (UHF) wireless-powered UWB radio (UHF/UWB hybrid) with asymmetric links is explored from system architecture to circuit implementation.

Context-aware, location-aware, and energy-aware computing for the IoT demands future micro-devices (e.g., RFID tags) with capabilities of sensing, processing, communication, and positioning, which can be integrated into everyday objects including paper documents, as well as food and pharmaceutical packages. To this end, reliable-operating and maintenance-free wireless networks with low-power and low-cost radio transceivers are essential. In this context, state-of-the-art passive RFID technologies provide limited data rate and positioning accuracy, whereas active radios suffer from high complexity and power-hungry transceivers. Impulse Radio UWB (IR-UWB) exhibits significant advantages that are expected to overcome these limitations. Wideband signals offer robust communications and high-precision positioning; duty-cycled operations allow link scalability; and baseband-like architecture facilitates extremely simple and low-power transmitters. However, the implementation of the IR-UWB receiver is still power-hungry and complex, and thus is unacceptable for self-powered or passive tags.

To cope with μW level power budget in wireless-powered systems, this dissertation proposes an UHF/UWB hybrid radio architecture with asymmetric links. It combines the passive UHF RFID and the IR-UWB transmitter. In the downlink (reader-tag), the tag is powered and controlled by UHF signals as conventional passive UHF tags, whereas it uses an IR-UWB transmitter to send data for a short time at a high rate in the uplink (tag-reader). Such an innovative architecture takes advantage of UWB transmissions, while the tag avoids the complex UWB receiver by shifting the burden to the reader. A wireless-powered tag providing -18.5 dBm sensitivity UHF downlink and 10 Mb/s UWB uplink is implemented in 180 nm CMOS. At the reader side, a non-coherent energy detection IR-UWB receiver is designed to pair the tag. The receiver is featured by high energy-efficiency and flexibility that supports multi-mode operations. A novel synchronization scheme based on the energy offset is suggested. It allows fast synchronization between the reader and tags, without increasing the hardware complexity. Time-of-Arrival (TOA) estimation schemes are analyzed and developed for the reader, which enables tag localization. The receiver prototype is fabricated in 90 nm CMOS with 16.3 mW power consumption and -79 dBm sensitivity at 10 Mb/s data rate. The system concept is verified by the link measurement between the tag and the reader. Compared with current passive UHF RFID systems, the UHF/UWB hybrid solution provides an order of magnitude improvement in terms of the data rate and positioning accuracy brought by the IR-UWB uplink.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xx, 94 p.
Series
Trita-ICT-ECS AVH, ISSN 1653-6363 ; 11:15
Keyword
Ultra-Wideband, impulse radio, IR-UWB, RFID, asymmetric links, UHF/UWB hybrid, wireless sensing, energy detection, low power, radio receiver, positioning, Internet-of-Things
National Category
Computer Systems Communication Systems
Identifiers
urn:nbn:se:kth:diva-59107 (URN)978-91-7501-206-3 (ISBN)
Public defence
2012-02-08, Sal/Hall D, KTH-Forum, Isafjordsgatan 39, Kista, 13:30 (English)
Opponent
Supervisors
Note
QC 20120110Available from: 2012-01-10 Created: 2012-01-10 Last updated: 2012-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusScopus

Search in DiVA

By author/editor
Zou, ZhuoBaghaei Nejad, MajidTenhunen, HannuZheng, Li-Rong
By organisation
Electronic, Computer and Software Systems, ECS
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 206 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf