Change search
ReferencesLink to record
Permanent link

Direct link
Properties of Wheat Gluten/Poly(lactic acid) Laminates
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
2010 (English)In: Journal of Agricultural and Food Chemistry, ISSN 0021-8561, E-ISSN 1520-5118, Vol. 58, no 12, 7344-7350 p.Article in journal (Refereed) Published
Abstract [en]

Laminates of compression-molded glycerol-plasticized wheat gluten (WG) films surrounded and supported by poly(lactic acid) (PLA) films have been produced and characterized. The objective was to obtain a fully renewable high gas barrier film with sufficient mechanical integrity to function in, for example, extrusion-coating paper/board applications. It was shown that the lamination made it possible to make films with a broad range of glycerol contents (0-30 wt %) with greater strength than single unsupported WG films. The low plasticizer contents yielded laminates with very good oxygen barrier properties. In addition, whereas the unsupported WO films had an immeasurably high water vapor transmission rate (WVTR), the laminate showed values that were finite and surprisingly, in several cases, also lower than that of PLA. Besides being a mechanical support (as evidenced by bending and tensile data) and a shield between the WG and surrounding moisture, the PLA layer also prevented the loss of the glycerol plasticizer from the WG layer. This was observed after the laminate had been aged on an "absorbing" blotting paper for up to 17 weeks. The interlayer adhesion (peel strength) decreased with decreasing glycerol content and increasing WG film molding temperature (130 degrees C instead of 110 degrees C). The latter effect was probably due to a higher protein aggregation, as revealed by infrared spectroscopy. The lamination temperature (110-140 degrees C) did not, however, have a major effect on the final peel strength.

Place, publisher, year, edition, pages
2010. Vol. 58, no 12, 7344-7350 p.
Keyword [en]
Wheat gluten, poly(lactic acid), glycerol content, laminate, oxygen permeability, water vapor transmission rate, biopolymer, GLUTEN FILMS, BARRIER PROPERTIES, SALICYLIC-ACID, PLASTICIZERS, EXTRUSION, GLYCEROL, PROTEINS, CORN
National Category
Chemical Engineering
URN: urn:nbn:se:kth:diva-14030DOI: 10.1021/jf1003144ISI: 000278704000034ScopusID: 2-s2.0-77953624673OAI: diva2:329195
QC 20100708Available from: 2010-07-08 Created: 2010-07-08 Last updated: 2010-07-08Bibliographically approved
In thesis
1. Protein-based Packaging Films, Sheets and Composites: Process Development and Functional Properties
Open this publication in new window or tab >>Protein-based Packaging Films, Sheets and Composites: Process Development and Functional Properties
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The depletion of the petroleum resources and a number of environmental concerns led to considerable research efforts in the field of biodegradable materials over the last few decades. Of the diverse range of biopolymers, wheat gluten (WG) stands out as an alternative to synthetic plastics in packaging applications due to its attractive combination of flexibility and strength, high gas barrier properties under low humidity conditions and renewability. The availability of raw materials has also been largely increased with an increase in the production of WG as a low-cost surplus material due to increasing demand for ethanol as fuel. In this study, WG was processed into films, sheets and composites using some of the most widely used techniques including solution casting, compression molding, extrusion and injection molding, accompanying process optimizations and characterization of their functional properties. This thesis consists mainly of six parts based on the purpose of the study. The first part addresses the aging and optical properties of the cast film in order to understand the mechanisms and reasons for the time-dependant physical and chemical changes. The films plasticized with glycerol were cast from acidic (pH 4) and basic (pH11) solutions. The film prepared from the pH 11 solution was mechanically more stable upon aging than the pH 4 film, which was initially very ductile but became brittle with time. It was revealed that the protein structure of the pH 4 film was initially less polymerized/aggregated and the polymerization increased during storage but it did not reach the degree of aggregation of the pH 11 film. During aging, the pH 4 film lost more mass than the pH 11 film mainly due to migration of glycerol but also due to some loss of volatile mass. In addition the greater plasticizer loss of the pH 4 film was presumably due to its initial lower degree of protein aggregation/polymerization. Glycerol content did not significantly change the opacity and pH 4 films showed good contact clarity because of less Maillard reaction. In the second part, the heat-sealability of WG films was investigated, using an impulse-heat sealer, as the sealability is one of the most important properties in the use of flexible packaging materials. It was observed that the WG films were readily sealable while preserving their mechanical integrity. The sealing temperature had a negligible effect on the lap-shear strength, but the peel strength increased with sealing temperature. The lap-shear strength increased with increasing mold temperature and the failure mode changed. The third part describes the possibility of using industrial hemp fibers to reinforce wheat gluten sheets based on evaluation of the fiber contents, fiber distribution and bonding between the fibers and matrix. It was found that the hemp fibers enhanced the mechanical properties, in which the fiber contents played a significant role in the strength. The fiber bonding was improved by addition of diamine as a cross-linker, while the fiber distribution needed to be improved. The fourth part presents a novel approach to improve the barrier and mechanical properties of extruded WG sheets with a single screw extruder at alkaline conditions using 3-5wt.% NaOH with or without 1 wt.% salicylic acid. The oxygen barrier, at dry conditions, was improved significantly with the addition of NaOH, while the addition of salicylic acid yielded poorer barrier properties. It was also observed that the WG sheets with 3 wt.% NaOH had the most suitable combination of low oxygen permeability and relatively small time-dependant changes in mechanical properties, probably due to low plasticizer migration and an optimal protein aggregation/polymerization. In the fifth part WG/PLA laminates were characterized for the purpose of improving the water barrier properties. The lamination was performed at 110°C and scanning electron microscopy showed that the laminated films were uniform in thickness. The laminates significantly suppressed the mass loss and showed promising water vapor barrier properties in humid conditions indicating possible applications in packaging. The final part addresses the development of injection molding processes for WG. Injection-molded nanocomposites of WG/MMT were also characterized. WG sheets were successively processed using injection molding and the process temperatures were found to preferably be in a range of 170-200°C, which was varied depending on the sample compositions. The clay was found to enhance the processability, being well dispersed in the matrix. The natural clay increased the tensile stiffness, whereas the modified clay increased the surface hydrophobicity. Both clays decreased the Tg and increased the thermal stability of the nanocomposites. The overall conclusion was that injection molding is a promising method for producing WG items of simple shapes. Further studies will reveal if gluten can also be used for making more complex shapes.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. 81 p.
wheat gluten, solution casting, compression molding, extrusion, injection molding, aging, migration, opacity, heat sealability, hemp fiber, laminate, polylactic acid, clay, nanocomposites.
National Category
Other Chemical Engineering
urn:nbn:se:kth:diva-10567 (URN)978-91-7415-358-3 (ISBN)
Public defence
2009-06-12, H1, Teknikringen 33, Stockholm, 10:00 (English)
QC 20100708Available from: 2009-06-04 Created: 2009-05-26 Last updated: 2011-03-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Cho, Sung-WooGällstedt, MikaelHedenqvist, Mikael S
By organisation
Polymeric MaterialsKTHFibre and Polymer Technology
In the same journal
Journal of Agricultural and Food Chemistry
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 99 hits
ReferencesLink to record
Permanent link

Direct link