References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Passivity-preserving model reduction by analytic interpolationPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 425, no 2-3, 608-633 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. Vol. 425, no 2-3, 608-633 p.
##### Keyword [en]

model reduction, passivity, interpolation, spectral zeros, positive-real functions, rational approximation
##### National Category

Computational Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-14157DOI: 10.1016/j.laa.2007.03.014ISI: 000249065400021ScopusID: 2-s2.0-34447551585OAI: oai:DiVA.org:kth-14157DiVA: diva2:331019
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

QC 20100721Available from: 2010-07-20 Created: 2010-07-20 Last updated: 2010-07-21Bibliographically approved
##### In thesis

Antoulas and Sorensen have recently proposed a passivity-preserving model-reduction method of linear systems based on Krylov projections. The idea is to approximate a positive-real rational transfer function with one of lower degree. The method is based on an observation by Antoulas (in the single-input/single-output case) that if the approximant is preserving a subset of the spectral zeros and takes the same values as the original transfer function in the mirror points of the preserved spectral zeros, then the approximant is also positive real. However, this turns out to be a special solution in the theory of analytic interpolation with degree constraint developed by Byrnes, Georgiou and Lindquist, namely the maximum-entropy (central) solution. By tuning the interpolation points and the spectral zeros, as prescribed by this theory, one is able to obtain considerably better reduced-order models. We also show that, in the multi-input/multi-output case, Sorensen's algorithm actually amounts to tangential Nevanlinna-Pick interpolation.

1. Modeling and Model Reduction by Analytic Interpolation and Optimization$(function(){PrimeFaces.cw("OverlayPanel","overlay24306",{id:"formSmash:j_idt731:0:j_idt735",widgetVar:"overlay24306",target:"formSmash:j_idt731:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});