Change search
ReferencesLink to record
Permanent link

Direct link
How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.ORCID iD: 0000-0003-1771-9401
Show others and affiliations
2010 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 4, 2592-2598 p.Article in journal (Refereed) Published
Abstract [en]

Three donor-linker-acceptor triphenylamine-based cyanoacrylic acid organic dyes used For dye-sensitized solar cells (DSCs) have been examined with respect to their effect on the open-circuit voltage (V-oc). Our previous study showed a decrease in V-oc for DSCs based oil dyes with increased molecular size (increased linker conjugation). In the present study, we investigate the origin of V-oc with respect to (i) conduction band (E-CB) positions of TiO2 and (ii) degree of recombination between electrons in TiO2 and electrolyte acceptor species at the interface. These parameters were Studied its it function of dye structure, dye load, and I-2 concentration. Two types of behavior were identified: the smaller polyene dyes show a surface-protecting effect preventing recombination upon increased dye loading, whereas the larger dyes enhance the recombination. How the different dye structures affect the recombination is discussed in terms of dye surface blocking and intermolecular interactions between dyes and electrolyte acceptor species.

Place, publisher, year, edition, pages
2010. Vol. 26, no 4, 2592-2598 p.
Keyword [en]
efficient molecular photovoltaics; nanocrystalline tio2 electrodes; organic-dyes; conversion-efficiency; interfacial transfer; coumarin dyes; energy-levels; performance; recombination; thiophene
National Category
Chemical Engineering
URN: urn:nbn:se:kth:diva-14288DOI: 10.1021/la902897zISI: 000274342200061ScopusID: 2-s2.0-77149163036OAI: diva2:332029
Swedish Research CouncilKnut and Alice Wallenberg Foundation
QC 20110126Available from: 2010-07-30 Created: 2010-07-30 Last updated: 2011-01-26Bibliographically approved
In thesis
1. Photoelectrochemical studies of dye-sensitized solar cells using organic dyes
Open this publication in new window or tab >>Photoelectrochemical studies of dye-sensitized solar cells using organic dyes
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The dye-sensitized solar cell (DSC) is a promising efficient low-cost molecular photovoltaic device. One of the key components in DSCs is the dye, as it is responsible for the capture of sunlight.

State-of-the-art DSC devices, based on ruthenium dyes, show record efficiencies of 10-12 %. During the last decade, metal-free organic dyes have been extensively explored as sensitizers for DSC application. The use of organic dyes is particularly attractive as it enables easy structural modifications, due to fairly short synthetic routes and reduced material cost. Novel dye should in addition to the light-harvesting properties also be compatible with the DSC components.

In this thesis, a series of new organic dyes are investigated, both when integrated in the DSC device and as individual components. The evaluation methods consisted of different electrochemical and photoelectrochemical techniques. Whereas the light-harvesting properties of the dyes were fairly easily improved, the behavior of the dye integrated in the DSC showed less predictable photovoltaic results.

The dye series studied in Papers II and IV revealed that their dye energetics limited vital electron-transfer processes, the dye regeneration (Paper II) and injection quantum yield (Paper IV). Further, in Papers III-VI, it was observed that different dye structures seemed to alter the interfacial electron recombination with the electrolyte. In addition to the dye structure sterics, some organic dyes appear to enhance the interfacial recombination, possibly due to specific dye-redox acceptor interaction (Paper V).

The impact of dye sterical modifications versus the use of coadsorbent was explored in Paper VI. The dye layer properties in the presence and absence of various coadsorbents were further investigated in Paper VII.

The core of this thesis is the identification of the processes and properties limiting the performance of the DSC device, aiming at an overall understanding of the compatibility between the DSC components and novel organic dyes.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. 84 p.
Trita-CHE-Report, ISSN 1654-1081 ; 2009 : 50
additive, charge recombination, coadsorbent, conduction band shift, dye-sensitized, electron lifetime, electron-transfer, organic dye, photoelectrochemical, photovoltaic, sensitizer, semiconductor, solar cell, solar cell efficiency, titanium dioxide
National Category
Physical Chemistry
urn:nbn:se:kth:diva-11248 (URN)978-91-7415-461-0 (ISBN)
Public defence
2009-10-30, F3, Lindstedtsvägen 26, KTH, Stcokholm, 10:00 (English)
QC 20100730Available from: 2009-10-14 Created: 2009-10-09 Last updated: 2010-07-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Marinado, TanniaNonomura, KazuteruNissfolk, JarlKarlsson, Martin KHagberg, Daniel PSun, LichengHagfeldt, Anders
By organisation
Centre of Molecular Devices, CMDOrganic Chemistry
In the same journal
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 170 hits
ReferencesLink to record
Permanent link

Direct link