Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surface Molecular Quantification and Photoelectrochemical Characterization of Mixed Organic Dye and Coadsorbent Layers on TiO2 for Dye-Sensitized Solar Cells
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
Show others and affiliations
2010 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 114, no 27, 11903-11910 p.Article in journal (Refereed) Published
Abstract [en]

Different molecular layers on TiO2 were prepared by using the p-dimethylaniline triphenylamine based organic dye, D29, together with the coadsorbents decylphosphonic acid (DPA), dineohexyl bis(3,3-dimethylbutyl)phosphinic acid (DINHOP), and chenodeoxycholic acid (CDCA). The surface molecular structure of dye and coadsorbent layers on TiO2 was investigated by photoelectron spectroscopy (PES). A focus was to determine the surface molecular concentrations using characteristic photoelectron core levels. Dye-sensitized solar cells (DSCs) were prepared from the same substrate and were further characterized by photoelectrochemical methods. Together the investigation gives information on the arrangement of the mixed molecular layer and a first insight to the extent to which the coadsorbents exchange with dye molecules on the TiO2 surface for the examined conditions.

Place, publisher, year, edition, pages
2010. Vol. 114, no 27, 11903-11910 p.
Keyword [en]
interfacial properties, charge-transfer, photovoltaic performance, conversion efficiency, coumarin dyes, acid, spectroscopy, complexes, light, heterojunctions
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-14290DOI: 10.1021/jp102381xISI: 000279507900031Scopus ID: 2-s2.0-77955330856OAI: oai:DiVA.org:kth-14290DiVA: diva2:332032
Funder
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Note
QC 20100730Available from: 2010-07-30 Created: 2010-07-30 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Photoelectrochemical studies of dye-sensitized solar cells using organic dyes
Open this publication in new window or tab >>Photoelectrochemical studies of dye-sensitized solar cells using organic dyes
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The dye-sensitized solar cell (DSC) is a promising efficient low-cost molecular photovoltaic device. One of the key components in DSCs is the dye, as it is responsible for the capture of sunlight.

State-of-the-art DSC devices, based on ruthenium dyes, show record efficiencies of 10-12 %. During the last decade, metal-free organic dyes have been extensively explored as sensitizers for DSC application. The use of organic dyes is particularly attractive as it enables easy structural modifications, due to fairly short synthetic routes and reduced material cost. Novel dye should in addition to the light-harvesting properties also be compatible with the DSC components.

In this thesis, a series of new organic dyes are investigated, both when integrated in the DSC device and as individual components. The evaluation methods consisted of different electrochemical and photoelectrochemical techniques. Whereas the light-harvesting properties of the dyes were fairly easily improved, the behavior of the dye integrated in the DSC showed less predictable photovoltaic results.

The dye series studied in Papers II and IV revealed that their dye energetics limited vital electron-transfer processes, the dye regeneration (Paper II) and injection quantum yield (Paper IV). Further, in Papers III-VI, it was observed that different dye structures seemed to alter the interfacial electron recombination with the electrolyte. In addition to the dye structure sterics, some organic dyes appear to enhance the interfacial recombination, possibly due to specific dye-redox acceptor interaction (Paper V).

The impact of dye sterical modifications versus the use of coadsorbent was explored in Paper VI. The dye layer properties in the presence and absence of various coadsorbents were further investigated in Paper VII.

The core of this thesis is the identification of the processes and properties limiting the performance of the DSC device, aiming at an overall understanding of the compatibility between the DSC components and novel organic dyes.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. 84 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2009 : 50
Keyword
additive, charge recombination, coadsorbent, conduction band shift, dye-sensitized, electron lifetime, electron-transfer, organic dye, photoelectrochemical, photovoltaic, sensitizer, semiconductor, solar cell, solar cell efficiency, titanium dioxide
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-11248 (URN)978-91-7415-461-0 (ISBN)
Public defence
2009-10-30, F3, Lindstedtsvägen 26, KTH, Stcokholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20100730Available from: 2009-10-14 Created: 2009-10-09 Last updated: 2010-07-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Sun, Licheng

Search in DiVA

By author/editor
Marinado, TanniaJiang, XiaoQuintana, MariaGabrielsson, ErikHagberg, Daniel PSun, LichengHagfeldt, Anders
By organisation
Centre of Molecular Devices, CMD
In the same journal
The Journal of Physical Chemistry C
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 85 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf