Change search
ReferencesLink to record
Permanent link

Direct link
Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition
KTH, School of Information and Communication Technology (ICT), Material Physics, Material Physics, MF.ORCID iD: 0000-0001-8774-9302
KTH, School of Information and Communication Technology (ICT).
2005 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 71, no 4Article in journal (Refereed) Published
Abstract [en]

Heteroepitaxial CeO2(80 nm)/L0.67Ca0.33MnO3(400 nm) film structures have been pulsed laser deposited on LaAlO3(001) single crystals to fabricate two terminal resistance switching devices. Ag/CeO2/L0.67Ca0.33MnO3 junctions exhibit reproducible switching between a high resistance state (HRS) with insulating properties and a semiconducting or metallic low resistance state (LRS) with resistance ratios up to 10(5). Reversible electrical switching is a polar effect achievable both in continuous sweeping mode and in the pulse regime. Successive temperature crossover of electronic transport from the thermal activation of the deep levels (E-a=320 meV) at high temperatures to thermal activation of the shallow levels (E-a=40 meV) and finally at low temperatures to the regime of temperature independent resistance, usually associated with quantum tunneling, has been found for the insulating HRS. The temperature dependence of the LRS reveals a para-to-ferromagnetic phase transition in the L0.67Ca0.33MnO3 (LCMO) electrode at T-c=260 K and an anomaly at lower temperatures similar to200 K corresponding to the Curie temperature of the Mn4+ depleted part of the LCMO film. Current-voltage characteristics in the LRS are highly nonlinear, and show negative differential conductivity (NDC). We suggest that the reversible resistance switching ocurrs due to the electric field induced nucleation of filament-type conducting valence-shifted CeOx domains inside the insulating CeO2 matrix. The abrupt insulator-to-metal transition is the result of localization of 4f electronic states in Ce3+ ions and the subsequent appearance of hole conductivity in the oxygen p-bands. NDC at low temperatures is relied upon the interband scattering of CeOx carriers from a low energy, high mobility valley into a high energy valley with low mobility.

Place, publisher, year, edition, pages
2005. Vol. 71, no 4
Keyword [en]
crystal point contacts, cerium dioxide, single-crystals, memory, films, semiconductors, boundaries, conduction, interface, transport
URN: urn:nbn:se:kth:diva-14494DOI: 10.1103/PhysRevB.71.045305ISI: 000226736200071ScopusID: 2-s2.0-15744382963OAI: diva2:332535
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Khartsev, SergiyGrishin, Alexander M.
By organisation
Material Physics, MFSchool of Information and Communication Technology (ICT)
In the same journal
Physical Review B. Condensed Matter and Materials Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 39 hits
ReferencesLink to record
Permanent link

Direct link