Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanostructured Co1-xNix(Sb1-yTey)(3) skutterudites: Theoretical modeling, synthesis and thermoelectric properties
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0001-5678-5298
Show others and affiliations
2005 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 97, no 4Article in journal (Refereed) Published
Abstract [en]

The properties of Te-doped Co(Sb1-yTey)(3) and Te-Ni double-doped Co1-xNix(Sb1-yTey)(3) nanostructured skutterudites were evaluated by means of x-ray powder diffraction, and transport properties measured on the synthesized samples have been compared with ab initio theoretical modeling. Theoretical optimal dopant contents have been evaluated according to the maximum value of the power factor, calculating the electronic transport properties from the ab initio material band structure using semiclassical Boltzmann transport theory. The samples have been synthesized by chemical alloying with Te substitution for Sb up to 2.5 at. % and Ni substitution for Co up to 2.0 at. %. X-ray powder diffraction has been performed on all samples to reveal information about phase purity and Rietveld refinement was performed for the phase composition and cell parameter. The thermoelectric properties of the resulting consolidates were investigated in a temperature range from 300 to 723 K using various measurement facilities. A standardization and round robin program was started among the participating evaluation laboratories in order to ensure reliability of the data obtained. The significant reduction in thermal conductivity, when compared to highly annealed CoSb3, could be proved which is caused by the nanostructuring, resulting in a high concentration of grain boundaries. A combination of substitution levels for Ni and Te has been found resulting in the largest ZT value of 0.65 at 680 K among unfilled skutterudite materials.

Place, publisher, year, edition, pages
2005. Vol. 97, no 4
Keyword [en]
effective core potentials, molecular calculations, cosb3, ni
Identifiers
URN: urn:nbn:se:kth:diva-14512DOI: 10.1063/1.1852072ISI: 000226841900084Scopus ID: 2-s2.0-13744250318OAI: oai:DiVA.org:kth-14512DiVA: diva2:332553
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Toprak, Muhammet S.

Search in DiVA

By author/editor
Toprak, Muhammet S.Muhammed, Mamoun
By organisation
Materials Science and Engineering
In the same journal
Journal of Applied Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf