Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tactile sensing in intelligent robotic manipulation - a review
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.ORCID iD: 0000-0002-7550-3134
2005 (English)In: Industrial robot, ISSN 0143-991X, E-ISSN 1758-5791, Vol. 32, no 1, 64-70 p.Article in journal (Refereed) Published
Abstract [en]

Purpose - When designing hardware and algorithms for robotic manipulation and grasping, sensory information is typically needed to control the grasping process. This paper presents an overview of the major grasping and manipulation approaches and the more common hardware used to obtain the necessary sensory information. Design/methodology/approach - This paper presents an overview of tactile sensing in intelligent robotic manipulation. The history the common issues, and applications are reviewed. Sensor performance is briefly discussed and compared to the human tactile sense. Advantages and disadvantages of the most common sensor approaches are discussed. Some examples are given of sensors that are widely available as of today. Eventually, some examples of the state-of-the-art in tactile sensing application are presented. Findings - Although many sensor technologies and strong theoretical models have been developed, there is still much left to be done in intelligent grasping and manipulation. This is partly due to the youth of the field and the complex nature of safe control in uncertain environments. Even though there are impressive results when it comes to specific examples of advanced manipulation, there seems to be room for great improvements of hardware and especially algorithms when it comes to more generic everyday domestic tasks. Originality/value - This paper presents a review of sensor hardware while also giving a glimpse of the major topics in grasping and manipulation. While better hardware of course is desirable, the major challenges seem to lie in the development and application of grasping and manipulation algorithms.

Place, publisher, year, edition, pages
2005. Vol. 32, no 1, 64-70 p.
Keyword [en]
robotics, materials handling, sensors
Identifiers
URN: urn:nbn:se:kth:diva-14580DOI: 10.1108/01439910510573318ISI: 000227454500012Scopus ID: 2-s2.0-18844364648OAI: oai:DiVA.org:kth-14580DiVA: diva2:332621
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Tactile Grasping for Domestic Service Robots: Simulations, Experiments and Hand Design
Open this publication in new window or tab >>Tactile Grasping for Domestic Service Robots: Simulations, Experiments and Hand Design
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents methods and tools for robotic grasping. The application in mind is service robots for a home environment, although the work also has applications in other areas. Service robots must be capable of manipulation, i.e. able to move objects from one place to another, in order to be truly useful.

There are many important technologies that all need to function together to enable robotic grasping. The robot must be mobile, have a robot arm, be able to navigate, and be equipped with vision and/or other sensor modalities. To be able to exploit all these features, the robot must be able to use its skills in an intelligent and safe manner even if its surroundings change over time. It must be able to create a representation of the world, reason about what to do, and be able to control its body so that the desired task can be performed. The focus of this thesis is the end-effector — the robot hand — and its control.

An intuitive formulation of a hybrid force/position grasp controller is proposed. The method is applied to three different robot hands in simulation and to one robot hand for real life experiments. Dynamic simulation using a modified version of the grasp simulator Grasp-It! is shown to be useful in the development of control algorithms and robot hardware. The simulator is also used to establish the required accuracy for object position that ensures that an adequate grasp is reached. It is also shown that simulation in combination with heuristics (rules) can be used to choose the most suitable grasp among certain candidate grasps.

The design of an under-actuated low-cost robot hand capable of hybrid force/control grasping is presented and its performance evaluated.

The results are discussed and related to the state of the art, the grasping problem, and common issues within mobile manipulation. The conclusion is that for several manipulation tasks that may occur in a home environment, an intuitive control formulation and low-cost hardware can offer secure force-controlled grasping. Using simulation of hybrid force/position control, it is possible to establish task and system requirements that ensure that an adequate grasp is achieved.

Abstract [sv]

Denna avhandling handlar om servicerobotar och deras gripförmåga. För att göra nytta i en hemmiljö måste robotar kunna flytta på saker från en plats till en annan. I detta arbete har metoder och verktyg för att greppa och hålla objekt utvecklats och testats.

För att en robot ska kunna greppa och manipulera objekt måste teknik från flera områden kombineras. Roboten måste kunna röra på sig, ha minst en arm, kunna navigera samt hitta runt. Den ska även kunna urskilja objekt och vara utrustad med syn, känsel och eventuellt andra sinnen. För att kunna använda dessa sinnen krävs att roboten kan fatta “intelligenta” beslut, skapa sig en världsuppfattning och röra sig kontrollerat. Roboten måste kunna göra allt detta i en föränderlig och ömtålig miljö. Denna avhandling fokuserar på en del av allt det som krävs, nämligen den del som handlar om robothänder och dess styrning.

En metod har utvecklats för att utveckla kraftstyrd reglering av robothänder. Metoden har testats på tre olika robothänder i simulering och på en robothand i verkliga experiment.

Simulatorn GraspIt! är sedan tidigare utvecklad för att simulera gripprocessen. Simulatorn har i detta arbete modifierats för att kunna användas både till att utveckla styrning och maskinvara. För att nå ett bra grepp om objekt måste man med viss noggrannhet veta var objektet finns. Simuleringsmiljön möjliggör till exempel kvantifiering av de krav som ställs på denna noggrannhet. Simuleringar kan även användas för att välja det bästa av många olika alternativa grepp.

En robothand med fler frihetsgrader än ställdon har utvecklats. Handenär utvecklad för att visa att det på ett kostnadseffektivt sätt går att utföra de kraftstyrda grepp som behövs för att kunna greppa föremål som vanligen förekommer i ett hem.

Resultaten diskuteras och relateras till de senaste rönen inom området. Slutsatsen är att man med en intuitiv reglerformulering och relativt enkel maskinvara kan utföra många av de uppgifter som en servicerobot kan tänkas ställas inför. Genom att simulera kraft- och positionsreglering är det möjligt att ställa krav både på uppgifter och på själva robotsystemet.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. xiii, 187 p.
Series
Trita-MMK, ISSN 1400-1179 ; 2009:11
Keyword
Manipulators, Simulation, Robot tactile systems, Modeling, Grasping, Tactile sensors
Identifiers
urn:nbn:se:kth:diva-10477 (URN)978-91-7415-363-7 (ISBN)
Public defence
2009-06-11, F3, Lindstedtsvägen 26, Royal Institute of Technology (KTH), 10:00 (English)
Opponent
Supervisors
Note
QC 20100812Available from: 2009-06-03 Created: 2009-05-18 Last updated: 2010-08-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Wikander, Jan

Search in DiVA

By author/editor
Tegin, JohanWikander, Jan
By organisation
Machine Design (Dept.)Mechatronics
In the same journal
Industrial robot

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1434 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf