Change search
ReferencesLink to record
Permanent link

Direct link
Development of multicomponent thermodynamic databases for use in process modelling and simulations
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Computational Thermodynamics.
2005 (English)In: Journal of Physics and Chemistry of Solids, ISSN 0022-3697, E-ISSN 1879-2553, Vol. 66, no 04-feb, 226-230 p.Article in journal (Refereed) Published
Abstract [en]

Thermodynamic databases describe the Gibbs energy of each phase in a given system, as a function of temperature, pressure and its constitution taking into account various properties like crystal structure, solubility of different element on different types of sites, magnetism, etc. The energetics from first principles calculations, crystallographic information and atomistic modelling results can be incorporated into the parametric Gibbs energies models in order to construct thermodynamic databases, being, however, experimental data obtained, e.g. from calorimetry, emf, thermal analyse, metallography, etc. which provides enthalpies, chemical potentials, phase boundary, etc. the basic type of information used. These thermodynamic databases can be an intermediate level between atomistic and macroscopic modelling, bridging scales and theoretical and empirical modelling. Thermodynamic databases provide consistent and accurate information for understanding the macroscopic behaviour of processes and transformations in real materials. This is essential to make realistic modelling and simulations for improving the production as well as teaching of phenomena which are too complex to be modelled directly from a pure theoretical approach. The majority of the phases present in materials for technical applications are solution phases, being its modelling the most complex part of the development of databases. In this paper, we show some features of the making of these databases, as well as the feedback obtained from their different applications and how that results in improvements.

Place, publisher, year, edition, pages
2005. Vol. 66, no 04-feb, 226-230 p.
National Category
Condensed Matter Physics
URN: urn:nbn:se:kth:diva-14594DOI: 10.1016/j.jpcs.2004.07.026ISI: 000227576500003ScopusID: 2-s2.0-13844286139OAI: diva2:332635
QC 20100525 QC 20111012. 11th International Conference on High Temperature materials Chemistry (HTMC-XI). Tokyo, JAPAN. MAY 19-23, 2003Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2011-10-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sundman, Bo
By organisation
Computational Thermodynamics
In the same journal
Journal of Physics and Chemistry of Solids
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link