Change search
ReferencesLink to record
Permanent link

Direct link
Theoretical study of triplet state properties of free-base porphin
KTH, School of Biotechnology (BIO), Theoretical Chemistry.ORCID iD: 0000-0002-1763-9383
2005 (English)In: Chemical Physics, ISSN 0301-0104, E-ISSN 1873-4421, Vol. 312, no 03-jan, 299-309 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents results and analysis of various properties of the triplet state of free-base porphin (FBP) as calculated by density-functional theory. The radiative lifetime of phosphorescence lines and microwave signals in optical detection of magnetic resonance (ODMR) spectra are obtained using the B3LYP hybrid density-functional and the quadratic response method. The zero-field splitting (ZFS) in the lowest triplet state, a B-3(2 omega) of FBP is calculated as an expectation value of spin-spin coupling operator using the self-consistent field wavefunction. The second-order contribution to US from the spin-orbit coupling operator is found to be almost negligible. The interpretation of the ODMR spectrum is completed by computing the hyperfine tensors of the N-14, C-13 and hydrogen atoms in the lowest triplet state. The most intense phosphorescence emission corresponds to the T-z-spin-sublevel of the a B-3(2u) state, where the z-axis lies in the N-H direction of the FBP molecule in a qualitative agreement with ODMR data. The results indicate that the observed decay of the lowest triplet state of FBP molecule is determined by non-radiative deactivation. The calculated radiative rate constant for the T-z-spin-sublevel k(z),= 2.65 x 10(-3) s(-1) is in agreement with the value k(z) similar or equal to 2 x 10(-3) s(-1), estimated by van Dorp et al. [W. van Dorp, W. Schoemaker, M. Soma, J. van der Waals, Mol. Phys. 30 (1975) 1701] from kinetic analysis of microwave-induced fluorescent signals. The correct prediction of the spin quantization axis of the most active spin sublevel and of its radiative lifetime in the lowest triplet state of the FBP molecule is taken as a proof of capability of the quadratic response time-dependent density-functional theory.

Place, publisher, year, edition, pages
2005. Vol. 312, no 03-jan, 299-309 p.
Keyword [en]
density-functional theory, electronic-absorption-spectrum, photosynthetic reaction centers, reversible dioxygen binding, field splitting parameters, initio uhf method, zero-field, excited-states, n-octane, rhodospirillum-rubrum
URN: urn:nbn:se:kth:diva-14660DOI: 10.1016/j.chemphys.2004.11.041ISI: 000228206700032ScopusID: 2-s2.0-15744365660OAI: diva2:332701
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ågren, Hans
By organisation
Theoretical Chemistry
In the same journal
Chemical Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 21 hits
ReferencesLink to record
Permanent link

Direct link