Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phase stability tuning in the NbxZr1-xN thin-film system for large stacking fault density and enhanced mechanical strength
KTH, School of Biotechnology (BIO), Theoretical Chemistry.ORCID iD: 0000-0001-8748-3890
2005 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 86, no 13Article in journal (Refereed) Published
Abstract [en]

The phase stability of hexagonal WC-structure and cubic NaCl-structure 4d transition metal nitrides was calculated using first-principles density functional theory. It is predicted that there is a multiphase or polytypic region for the 4d transition metal nitrides with a valence electron concentration around 9.5 to 9.7 per formula unit. For verification, epitaxial NbxZr1-xN (0 <= x <= 1) was grown by reactive magnetron sputter deposition on MgO(001) substrates and analyzed with transmission electron microscopy (TEM) and x-ray diffraction. The defects observed in the films were threading dislocations due to nucleation and growth on the lattice-mismatched substrate and planar defects (stacking faults) parallel to the substrate surface. The highest defect density was found at the x=0.5 composition. The nanoindentation hardness of the films varied between 21 GPa for the binary nitrides, and 26 GPa for Nb0.5Zr0.5N. Unlike the cubic binary nitrides, no slip on the preferred [1 (1) over bar0]{110} slip system was observed. The increase in hardness is attributed to the increase in defect density at x=0.5, as the defects act as obstacles for dislocation glide during deformation. The findings present routes for the design of wear-resistant nitride coatings by phase stability tuning.

Place, publisher, year, edition, pages
2005. Vol. 86, no 13
Keyword [en]
hardness, tin, vn
Identifiers
URN: urn:nbn:se:kth:diva-14683ISI: 000228422600040OAI: oai:DiVA.org:kth-14683DiVA: diva2:332724
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Hugosson, Håkan Wilhelm

Search in DiVA

By author/editor
Hugosson, Håkan Wilhelm
By organisation
Theoretical Chemistry
In the same journal
Applied Physics Letters

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf