Change search
ReferencesLink to record
Permanent link

Direct link
Identification of small scale biochemical networks based on general type system perturbations
KTH, School of Electrical Engineering (EES), Automatic Control.
2005 (English)In: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 272, no 9, 2141-2151 p.Article in journal (Refereed) Published
Abstract [en]

New technologies enable acquisition of large data-sets containing genomic, proteomic and metabolic information that describe the state of a cell. These data-sets call for systematic methods enabling relevant information about the inner workings of the cell to be extracted. One important issue at hand is the understanding of the functional interactions between genes, proteins and metabolites. We here present a method for identifying the dynamic interactions between biochemical components within the cell, in the vicinity of a steady-state. Key features of the proposed method are that it can deal with data obtained under perturbations of any system parameter, not only concentrations of specific components, and that the direct effect of the perturbations does not need to be known. This is important as concentration perturbations are often difficult to perform in biochemical systems and the specific effects of general type perturbations are usually highly uncertain, or unknown. The basis of the method is a linear least-squares estimation, using time-series measurements of concentrations and expression profiles, in which system states and parameter perturbations are estimated simultaneously. An important side-effect of also employing estimation of the parameter perturbations is that knowledge of the system's steady-state concentrations, or activities, is not required and that deviations from steady-state prior to the perturbation can be dealt with. Time derivatives are computed using a zero-order hold discretization, shown to yield significant improvements over the widely used Euler approximation. We also show how network interactions with dynamics that are too fast to be captured within the available sampling time can be determined and excluded from the network identification. Known and unknown moiety conservation relationships can be processed in the same manner. The method requires that the number of samples equals at least the number of network components and, hence, is at present restricted to relatively small-scale networks. We demonstrate herein the performance of the method on two small-scale in silico genetic networks.

Place, publisher, year, edition, pages
2005. Vol. 272, no 9, 2141-2151 p.
Keyword [en]
biochemical networks, identification, Jacobian, time-series measurements, reaction-mechanisms, time-series, causal connectivities, expression
URN: urn:nbn:se:kth:diva-14697DOI: 10.1111/j.1742-4658.2005.04605.xISI: 000228640600007ScopusID: 2-s2.0-18444388867OAI: diva2:332738
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Jacobsen, Elling W.
By organisation
Automatic Control
In the same journal
The FEBS Journal

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 16 hits
ReferencesLink to record
Permanent link

Direct link